Robert K Bradley

Fred Hutchinson Cancer Research Center, Seattle, Washington, United States

Are you Robert K Bradley?

Claim your profile

Publications (6)71.96 Total impact

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have suggested that plant genomes have undergone potentially rampant horizontal gene transfer (HGT), especially in the mitochondrial genome. Parasitic plants have provided the strongest evidence of HGT, which appears to be facilitated by the intimate physical association between the parasites and their hosts. A recent phylogenomic study demonstrated that in the holoparasite (Rafflesiaceae), whose close relatives possess the world's largest flowers, about 2.1% of nuclear gene transcripts were likely acquired from its obligate host. Here, we used next-generation sequencing to obtain the 38 protein-coding and ribosomal RNA genes common to the mitochondrial genomes of angiosperms from and five additional species, including two of its closest relatives and two host species. Strikingly, our phylogenetic analyses conservatively indicate that 24%-41% of these gene sequences show evidence of HGT in Rafflesiaceae, depending on the species. Most of these transgenic sequences possess intact reading frames and are actively transcribed, indicating that they are potentially functional. Additionally, some of these transgenes maintain synteny with their donor and recipient lineages, suggesting that native genes have likely been displaced via homologous recombination. Our study is the first to comprehensively assess the magnitude of HGT in plants involving a genome (i.e., mitochondria) and a species interaction (i.e., parasitism) where it has been hypothesized to be potentially rampant. Our results establish for the first time that, although the magnitude of HGT involving nuclear genes is appreciable in these parasitic plants, HGT involving mitochondrial genes is substantially higher. This may represent a more general pattern for other parasitic plant clades and perhaps more broadly for angiosperms.
    PLoS Genetics 02/2013; 9(2):e1003265. · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Long noncoding RNAs (lncRNAs) are often expressed in a development-specific manner, yet little is known about their roles in lineage commitment. Here, we identified Braveheart (Bvht), a heart-associated lncRNA in mouse. Using multiple embryonic stem cell (ESC) differentiation strategies, we show that Bvht is required for progression of nascent mesoderm toward a cardiac fate. We find that Bvht is necessary for activation of a core cardiovascular gene network and functions upstream of mesoderm posterior 1 (MesP1), a master regulator of a common multipotent cardiovascular progenitor. We also show that Bvht interacts with SUZ12, a component of polycomb-repressive complex 2 (PRC2), during cardiomyocyte differentiation, suggesting that Bvht mediates epigenetic regulation of cardiac commitment. Finally, we demonstrate a role for Bvht in maintaining cardiac fate in neonatal cardiomyocytes. Together, our work provides evidence for a long noncoding RNA with critical roles in the establishment of the cardiovascular lineage during mammalian development.
    Cell 01/2013; · 31.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have shown that plant genomes have potentially undergone rampant horizontal gene transfer (HGT). In plant parasitic systems HGT appears to be facilitated by the intimate physical association between the parasite and its host. HGT in these systems has been invoked when a DNA sequence obtained from a parasite is placed phylogenetically very near to its host rather than with its closest relatives. Studies of HGT in parasitic plants have relied largely on the fortuitous discovery of gene phylogenies that indicate HGT, and no broad systematic search for HGT has been undertaken in parasitic systems where it is most expected to occur. We analyzed the transcriptomes of the holoparasite Rafflesia cantleyi Solms-Laubach and its obligate host Tetrastigma rafflesiae Miq. using phylogenomic approaches. Our analyses show that several dozen actively transcribed genes, most of which appear to be encoded in the nuclear genome, are likely of host origin. We also find that hundreds of vertically inherited genes (VGT) in this parasitic plant exhibit codon usage properties that are more similar to its host than to its closest relatives. Our results establish for the first time a substantive number of HGTs in a plant host-parasite system. The elevated rate of unidirectional host-to- parasite gene transfer raises the possibility that HGTs may provide a fitness benefit to Rafflesia for maintaining these genes. Finally, a similar convergence in codon usage of VGTs has been shown in microbes with high HGT rates, which may help to explain the increase of HGTs in these parasitic plants.
    BMC Genomics 06/2012; 13:227. · 4.40 Impact Factor
  • Source
    Rahul Satija, Robert K Bradley
    [Show abstract] [Hide abstract]
    ABSTRACT: Highly overlapping patterns of genome-wide binding of many distinct transcription factors have been observed in worms, insects, and mammals, but the origins and consequences of this overlapping binding remain unclear. While analyzing chromatin immunoprecipitation data sets from 21 sequence-specific transcription factors active in the Drosophila embryo, we found that binding of all factors exhibits a dose-dependent relationship with "TAGteam" sequence motifs bound by the zinc finger protein Vielfaltig, also known as Zelda, a recently discovered activator of the zygotic genome. TAGteam motifs are present and well conserved in highly bound regions, and are associated with transcription factor binding even in the absence of canonical recognition motifs for these factors. Furthermore, levels of binding in promoters and enhancers of zygotically transcribed genes are correlated with RNA polymerase II occupancy and gene expression levels. Our results suggest that Vielfaltig acts as a master regulator of early development by facilitating the genome-wide establishment of overlapping patterns of binding of diverse transcription factors that drive global gene expression.
    Genome Research 02/2012; 22(4):656-65. · 14.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thousands of human genes contain introns ending in NAGNAG (N any nucleotide), where both NAGs can function as 3' splice sites, yielding isoforms that differ by inclusion/exclusion of three bases. However, few models exist for how such splicing might be regulated, and some studies have concluded that NAGNAG splicing is purely stochastic and nonfunctional. Here, we used deep RNA-Seq data from 16 human and eight mouse tissues to analyze the regulation and evolution of NAGNAG splicing. Using both biological and technical replicates to estimate false discovery rates, we estimate that at least 25% of alternatively spliced NAGNAGs undergo tissue-specific regulation in mammals, and alternative splicing of strongly tissue-specific NAGNAGs was 10 times as likely to be conserved between species as was splicing of non-tissue-specific events, implying selective maintenance. Preferential use of the distal NAG was associated with distinct sequence features, including a more distal location of the branch point and presence of a pyrimidine immediately before the first NAG, and alteration of these features in a splicing reporter shifted splicing away from the distal site. Strikingly, alignments of orthologous exons revealed a ∼15-fold increase in the frequency of three base pair gaps at 3' splice sites relative to nearby exon positions in both mammals and in Drosophila. Alternative splicing of NAGNAGs in human was associated with dramatically increased frequency of exon length changes at orthologous exon boundaries in rodents, and a model involving point mutations that create, destroy, or alter NAGNAGs can explain both the increased frequency and biased codon composition of gained/lost sequence observed at the beginnings of exons. This study shows that NAGNAG alternative splicing generates widespread differences between the proteomes of mammalian tissues, and suggests that the evolutionary trajectories of mammalian proteins are strongly biased by the locations and phases of the introns that interrupt coding sequences.
    PLoS Biology 01/2012; 10(1):e1001229. · 12.69 Impact Factor

Publication Stats

110 Citations
71.96 Total Impact Points

Top Journals

Institutions

  • 2012–2013
    • Fred Hutchinson Cancer Research Center
      • Computational Biology
      Seattle, Washington, United States
    • University of Oxford
      • Department of Statistics
      Oxford, ENG, United Kingdom
    • Massachusetts Institute of Technology
      • Department of Biology
      Cambridge, MA, United States