Hiroyuki Yano

Oita University, Ōita, Ōita, Japan

Are you Hiroyuki Yano?

Claim your profile

Publications (3)5.98 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone is essentially composed of two components, hydroxyapatite and extracellular matrix proteins. The extracellular matrix of bone is primary composed of collagen, mostly type I collagen, with lesser amounts of other types of collagen such as type V collagen. Osteoblast differentiation is a multi-step process in which many classes of factors function in a coordinated manner. Sp7/Osterix, which binds to G/C-rich sequences, is a transcription factor that contributes to osteoblast differentiation. The present study aimed to clarify the involvement of Sp7/Osterix with the proximal promoter region of the mouse Col1a2 gene containing multiple G/C-rich sequences exist. Consequently, a functional analysis of the proximal mouse Col1a2 promoter showed that a substitution mutation of the second G/C-rich sequence from the transcription site specifically decreased the activity of osteoblastic cells. In addition, the experiments of overexpression of Sp7/Osterix and treatment with its specific siRNA showed that this G/C-rich sequence is responsible for the specific expression in osteoblastic cells. Consistent with these data, Sp7/Osterix bound to the region and increased the expression of the Col1a2 gene in association with osteoblast differentiation in the culture system.
    Biochemical and Biophysical Research Communications 01/2014; · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The murine preosteoblastic cell line, MC3T3-E1, is widely used to study bone formation and differentiation in vitro. However, this cell line is unstable in culture. The current study was designed to establish a stable osteoblastic cell line. A mammalian expression vector carrying the SV 40 large T antigen was introduced into a primary culture of cells isolated from the calvaria of newborn mice. Among isolated cell lines, the MN16 cell line was selected for further characterization. The MN16 cell line was cultured for 28 days, and compared with the MC3T3-E1 cell line with or without induction. The expression of bone-related genes was examined using the real-time RT-PCR technique. Alizarin red and von Kossa staining were used to detect mineralization of nodules in the cultures. The cell line showed the characteristics of osteoblastic cells in term of gene expression patterns of various molecular markers and calcium deposition in the cell layer after induction. Furthermore, the MN16 cells showed strong adhesion to the basic domain of collagen, a result that is specific for bone-derived cells. The MN16 cell line was found to be stably differentiated into bone formation cells in vitro and should be useful for studying bone biology.
    Cell and Tissue Banking 08/2013; · 1.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radiation induced fibrosis occurs following a therapeutic or accidental radiation exposure in normal tissues. Tissue fibrosis is the excessive accumulation of collagen and other extracellular matrix components. This study investigated how ionizing radiation affects the expression level and signal pathway of type I collagen. Real time RT-RCR showed that both α1 and α2 chain of type I collagen mRNA were elevated from 48 h after irradiation with 10 Gy in NIH3T3 cells. The relative luciferase activities of both genes and type I collagen marker were elevated at 72 h. TGF-β1 mRNA was elevated earlier than those of type I collagen genes. A Western blot analysis showed the elevation of Smad phosphorylation at 72 h. Conversely, treatment with TGF-β receptor inhibitor inhibited the mRNA and relative luciferase activity of type I collagen. The phosphorylation of Smad was repressed with the inhibitor, and the luciferase activity was cancelled using a mutant construct of Smad binding site of α2(I) collagen gene. However, the MAPK pathways, p38, ERK1/2 and JNK, were not affected with specific inhibitors or siRNA. The data showed that the Smad pathway mediated the expression of type I collagen in radiation induced fibrosis.
    Biochemical and Biophysical Research Communications 02/2012; 418(3):457-63. · 2.41 Impact Factor