Shih-Kai Wang

Concordia University–Ann Arbor, Ann Arbor, Michigan, United States

Are you Shih-Kai Wang?

Claim your profile

Publications (8)42.56 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The purpose of this study was to identify the major molecular components in the secretory and maturation stages of amelogenesis through transcriptome analyses. Ameloblasts (40 sections per age group) were laser micro-dissected from Day 5 (secretory stage) and Days 11-12 (maturation stage) first molars. PolyA+ RNA was isolated from the lysed cells, converted to cDNA, and amplified to generate a cDNA library. DNA sequences were obtained using next generation sequencing and analyzed to identify genes whose expression had increased or decreased at least 1.5-fold in maturation stage relative to secretory stage ameloblasts. Among the 9198 genes that surpassed the quality threshold, 373 showed higher expression in secretory stage, while 614 genes increased in maturation stage ameloblasts. The results were cross-checked against a previously published transcriptome generated from tissues overlying secretory and maturation stage mouse incisor enamel and 34 increasing and 26 decreasing expressers common to the two studies were identified. Expression of F2r, which encodes protease activated receptor 1 (PAR1) that showed 10-fold higher expression during the secretory stage in our transcriptome analysis, was characterized in mouse incisors by immunohistochemistry. PAR1 was detected in secretory, but not maturation stage ameloblasts. We conclude that transcriptome analyses are a good starting point for identifying genes/proteins that are critical for proper dental enamel formation and that PAR1 is specifically expressed by secretory stage ameloblasts.
    Connective tissue research. 08/2014; 55(S1):29-32.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Integrins are cell-surface adhesion receptors that bind to extracellular matrices (ECM) and mediate cell-ECM interactions. Some integrins are known to play critical roles in dental enamel formation. We recruited two Hispanic families with generalized hypoplastic amelogenesis imperfecta (AI). Analysis of whole-exome sequences identified three integrin beta 6 (ITGB6) mutations responsible for their enamel malformations. The female proband of Family 1 was a compound heterozygote with an ITGB6 transition mutation in Exon 4 (g.4545G>A c.427G>A p.Ala143Thr) and an ITGB6 transversion mutation in Exon 6 (g.27415T>A c.825T>A p.His275Gln). The male proband of Family 2 was homozygous for an ITGB6 transition mutation in Exon 11 (g.73664C>T c.1846C>T p.Arg616*) and hemizygous for a transition mutation in Exon 6 of Nance-Horan Syndrome (NHS Xp22.13; g.355444T>C c.1697T>C p.Met566Thr). These are the first disease-causing ITGB6 mutations to be reported. Immunohistochemistry of mouse mandibular incisors localized ITGB6 to the distal membrane of differentiating ameloblasts and pre-ameloblasts, and then appeared to be internalized by secretory stage ameloblasts. ITGB6 expression was strongest in the maturation stage and its localization was associated with ameloblast modulation. Our findings demonstrate that early and late amelogenesis depend upon cell-matrix interactions. Our approach (from knockout mouse phenotype to human disease) demonstrates the power of mouse reverse genetics in mutational analysis of human genetic disorders and attests to the need for a careful dental phenotyping in large-scale knockout mouse projects.
    Human Molecular Genetics 12/2013; · 7.69 Impact Factor
  • Trends in Biochemical Sciences 09/2013; 38(9):424–425. · 13.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: FAM20C, also known as Golgi Casein Kinase (G-CK), is proposed to be the archetype for a family of secreted kinases that phosphorylate target proteins in the Golgi and in extracellular matrices, but FAM20C serving an extracellular function is controversial. FAM20C phosphorylates secretory calcium-binding phosphoproteins (SCPPs), which are associated with the evolution of biomineralization in vertebrates. Current models of biomineralization assume SCPP proteins are secreted as phosphoproteins and their phosphates are essential for protein conformation and function. It would be a radical departure from current theories if proteins in mineralizing matrices were dephosphorylated as part of the mineralization mechanism and rephosphorylated in the extracellular milieu by FAM20C using ATP. To see if such mechanisms are possible in the formation of dental enamel, we tested the hypothesis that FAM20C is secreted by ameloblasts and accumulates in the enamel extracellular matrix during tooth development. FAM20C localization was determined by immunohistochemistry in Day 5 mouse incisors and molars and by Western blot analyses of proteins extracted from pig enamel organ epithelia (EOE) and enamel shavings. FAM20C localized intracellularly within ameloblasts and odontoblasts in a pattern consistent with Golgi localization. Western blots detected FAM20C in the EOE extracts but not in the enamel matrix. We conclude that FAM20C is not a constituent of the enamel extracellular matrix and functions intracellularly within ameloblasts.
    Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 05/2013; · 6.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enamel-renal syndrome (ERS) is an autosomal recessive disorder characterized by severe enamel hypoplasia, failed tooth eruption, intrapulpal calcifications, enlarged gingiva, and nephrocalcinosis. Recently, mutations in were reported to cause amelogenesis imperfecta and gingival fibromatosis syndrome (AIGFS), which closely resembles ERS except for the renal calcifications. We characterized three families with AIGFS and identified, in each case, recessive mutations: family 1 (c.992G>A; g.63853G>A; p.Gly331Asp), family 2 (c.720-2A>G; g.62232A>G; p.Gln241_Arg271del), and family 3 (c.406C>T; g.50213C>T; p.Arg136* and c.1432C>T; g.68284C>T; p.Arg478*). Significantly, a kidney ultrasound of the family 2 proband revealed nephrocalcinosis, revising the diagnosis from AIGFS to ERS. By characterizing teeth extracted from the family 3 proband, we demonstrated that molars lacked true enamel, showed extensive crown and root resorption, hypercementosis, and partial replacement of resorbed mineral with bone or coalesced mineral spheres. Supported by the observation of severe ectopic calcifications in the kidneys of null mice, we conclude that FAM20A, which has a kinase homology domain and localizes to the Golgi, is a putative Golgi kinase that plays a significant role in the regulation of biomineralization processes, and that mutations in cause both AIGFS and ERS.
    PLoS Genetics 02/2013; 9(2):e1003302. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inherited dentin defects are classified into three types of dentinogenesis imperfecta (DGI) and two types of dentin dysplasia (DD). The genetic etiology of DD-I is unknown. Defects in dentin sialophosphoprotein (DSPP) cause DD type II and DGI types II and III. DGI type I is the oral manifestation of osteogenesis imperfecta (OI), a systemic disease typically caused by defects in COL1A1 or COL1A2. Mutations in MSX1, PAX9, AXIN2, EDA and WNT10A can cause non-syndromic familial tooth agenesis. In this study a simplex pattern of clinical dentinogenesis imperfecta juxtaposed with a dominant pattern of hypodontia (mild tooth agenesis) was evaluated, and available family members were recruited. Mutational analyses of the candidate genes for DGI and hypodontia were performed and the results validated. A spontaneous novel mutation in COL1A2 (c.1171G>A; p.Gly391Ser) causing only dentin defects and a novel mutation in PAX9 (c.43T>A; p.Phe15Ile) causing hypodontia were identified and correlated with the phenotypic presentations in the family. Bone radiographs of the proband's dominant leg and foot were within normal limits. We conclude that when no DSPP mutation is identified in clinically determined isolated DGI cases, COL1A1 and COL1A2 should be considered as candidate genes. PAX9 mutation p.Phe15Ile within the N-terminal β-hairpin structure of the PAX9 paired domain causes tooth agenesis.
    PLoS ONE 01/2012; 7(12):e51533. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dentin sialophosphoprotein (DSPP) mutations cause dentin dysplasia type II (DD-II) and dentinogenesis imperfecta types II and III (DGI-II and DGI-III, respectively). We identified two kindreds with DGI-II who exhibited vertical bands of hypoplastic enamel. Both families had a previously reported DSPP mutation that segregated with the disease phenotype. Oral photographs and dental radiographs of four affected and one unaffected participant in one family and of the proband in the second family were used to document the dental phenotypes. We aligned the 33 unique allelic DSPP sequences showing variable patterns of insertions and deletions (indels), generated a merged dentin phosphoprotein (DPP) sequence that includes sequences from all DSPP length haplotypes, and mapped the known DSPP mutations in this context. Analyses of the DSPP sequence changes and their probable effects on protein expression, as well as published findings of the dental phenotype in Dspp null mice, support the hypothesis that all DSPP mutations cause pathology through dominant-negative effects. Noting that Dspp is transiently expressed by mouse pre-ameloblasts during formation of the dentino-enamel junction, we hypothesize that DSPP dominant-negative effects potentially cause cellular pathology in pre-ameloblasts that, in turn, causes enamel defects. We conclude that enamel defects can be part of the dental phenotype caused by DSPP mutations, although DSPP is not critical for dental enamel formation.
    European Journal Of Oral Sciences 12/2011; 119 Suppl 1:158-67. · 1.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neural crest cells (NCCs) are a multipotent embryonic cell population that contributes to the formation of various craniofacial structures including teeth. It has been generally believed that dental enamel is an ectodermal derivative, whereas the dentin-pulp complex and the surrounding supporting tissues originate from NCC-derived mesenchyme. These traditional concepts stem mainly from several early studies of fishes and amphibians. Recently, Wnt1-Cre/R26R mice, a mouse model for NCC lineage analysis, revealed the contribution of NCCs to mammalian tooth development. However, the discrepancy of expression patterns between different NCC-specific transgenic mouse lines makes it compulsory to revisit the cell lineage in mammalian tooth development. Here, we reevaluated the NCC lineage during mouse tooth development by using P0-Cre/R26R mice, another NCC-specific transgenic mouse line. Inconsistent with the traditional concepts, we observed the potential contribution of NCCs to developing enamel organ and enamel formation. We also demonstrated that the P0-Cre transgene was specifically expressed in migrating NCC in the hindbrain region, where NCC contributes to tooth, validating their applicability for NCC lineage analysis. Our unanticipated finding may change the general understanding of tooth development and provide new insights into dental stem cell biology.
    Biochemical and Biophysical Research Communications 11/2011; 415(1):114-9. · 2.28 Impact Factor