Stefano Volinia

The Ohio State University, Columbus, Ohio, United States

Are you Stefano Volinia?

Claim your profile

Publications (227)1743.7 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: DNMT3B encodes a DNA methyltransferase implicated in aberrant epigenetic changes contributing to leukemogenesis. We tested whether DNMT3B expression, measured by NanoString nCounter assay, associates with outcome, gene- and microRNA-expression and DNA methylation profiles in 210 older (⩾60 years) adults with primary, cytogenetically normal AML (CN-AML). Patients were dichotomized into high versus low expressers using median cut. Outcomes were assessed in the context of known CN-AML prognosticators. Gene- and microRNA-expression, and DNA methylation profiles were analyzed using microarrays and MethylCap-sequencing, respectively. High DNMT3B expressers had fewer complete remissions (CR; P=0.002) and shorter disease-free (DFS; P=0.02) and overall (OS; P<0.001) survival. In multivariable analyses, high DNMT3B expression remained an independent predictor of lower CR rates (P=0.04) and shorter DFS (P=0.04) and OS (P=0.001). High DNMT3B expression associated with a gene-expression profile comprising 363 genes involved in differentiation, proliferation and survival pathways, but with only 4 differentially expressed microRNAs (miR-133b, miR-148a, miR-122, miR-409-3p) and no differential DNA methylation regions. We conclude that high DNMT3B expression independently associates with adverse outcome in older CN-AML patients. Gene-expression analyses suggest that DNMT3B is involved in the modulation of several genes, although the regulatory mechanisms remain to be investigated to devise therapeutic approaches specific for these patients.Leukemia accepted article preview online, 10 September 2014. doi:10.1038/leu.2014.267.
    Leukemia. 09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Barrett's esophagus (BE) involves a metaplastic replacement of native esophageal squamous epithelium (Sq) by columnar-intestinalized mucosa, and it is the main risk factor for Barrett-related adenocarcinoma (BAc). Ultra-conserved regions (UCRs) are a class non-coding sequences that are conserved in humans, mice and rats. More than 90% of UCRs are transcribed (T-UCRs) in normal tissues, and are altered at transcriptional level in tumorigenesis. To identify the T-UCR profiles that are dysregulated in Barrett's mucosa transformation, microarray analysis was performed on a discovery set of 51 macro-dissected samples obtained from 14 long-segment BE patients. Results were validated in an independent series of esophageal biopsy/surgery specimens and in two murine models of Barrett's esophagus (i.e. esophagogastric-duodenal anastomosis). Progression from normal to BE to adenocarcinoma was each associated with specific and mutually exclusive T-UCR signatures that included up-regulation of uc.58-, uc.202-, uc.207-, and uc.223- and down-regulation of uc.214+. A 9 T-UCR signature characterized BE versus Sq (with the down-regulation of uc.161-, uc.165-, and uc.327-, and the up-regulation of uc.153-, uc.158-, uc.206-, uc.274-, uc.472-, and uc.473-). Analogous BE-specific T-UCR profiles were shared by human and murine lesions. This study is the first demonstration of a role for T-UCRs in the transformation of Barrett's mucosa.
    Oncotarget 08/2014; 5(16):7162-7171. · 6.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma (GBM) frequently displays amplification and/or mutation of the epidermal growth factor receptor (EGFR) gene. Highlighting the importance of EGFR in the pathogenesis of GBM, aberrant EGFR (ΔEGFR, also known as EGFRvIII) confers a variety of biological effects upon its expression, including resistance to radiation and chemotherapeutic agents, promotion of tumor cell motility and invasion, enhancement of tumorigenicity in vivo, and maintenance of GBM growth and heterogeneity. We hypothesized that this diverse oncogenic pathophysiology exerted by ΔEGFR is regulated, in part, through the modulation of microRNA (miR) activity, widely shown to be involved in many biological processes including cancer initiation, maintenance and progression.
    Neuro-oncology. 07/2014; 16 Suppl 3:iii14-iii15.
  • Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 03/2014; · 10.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nucleophosmin mutated AML (NPM1mut-AML) patients have a high rate of complete remission (CR) to induction chemotherapy. However, the mechanisms responsible for such effects are unknown. Since miR-10 family members are expressed at high levels in NPM1mut-AML, we evaluated whether these microRNAs could predict chemotherapy response in AML. We found that high baseline miR-10 family expression in 54 untreated cytogenetically heterogeneous AML patients was associated with achieving CR. However, when we included NPM1 mutation status in the multivariable model, there was a significant interaction effect between miR-10a-5p expression and NPM1 mutation status. Similar results were observed when using a second cohort of 183 cytogenetically normal older (age≥60 years) AML patients. Loss and gain of function experiments using miR-10a-5p in cell lines and primary blasts did not demonstrate any effect in apoptosis or cell proliferation at baseline or after chemotherapy. These data support a bystander role for the miR-10 family in NPM1mut-AML.
    Blood 03/2014; · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant expression of the secreted protein, acidic, cysteine-rich (osteonectin) (SPARC) gene, which encodes a matricellular protein that participates in normal tissue remodeling, is associated with a variety of diseases including cancer, but the contribution of SPARC to malignant growth remains controversial. We previously reported that SPARC was among the most upregulated genes in cytogenetically normal acute myeloid leukemia (CN-AML) patients with gene-expression profiles predictive of unfavorable outcome, such as mutations in isocitrate dehydrogenase 2 (IDH2-R172) and overexpression of the oncogenes brain and acute leukemia, cytoplasmic (BAALC) and v-ets erythroblastosis virus E26 oncogene homolog (ERG). In contrast, SPARC was downregulated in CN-AML patients harboring mutations in nucleophosmin (NPM1) that are associated with favorable prognosis. Based on these observations, we hypothesized that SPARC expression is clinically relevant in AML. Here, we found that SPARC overexpression is associated with adverse outcome in CN-AML patients and promotes aggressive leukemia growth in murine models of AML. In leukemia cells, SPARC expression was mediated by the SP1/NF-κB transactivation complex. Furthermore, secreted SPARC activated the integrin-linked kinase/AKT (ILK/AKT) pathway, likely via integrin interaction, and subsequent β-catenin signaling, which is involved in leukemia cell self-renewal. Pharmacologic inhibition of the SP1/NF-κB complex resulted in SPARC downregulation and leukemia growth inhibition. Together, our data indicate that evaluation of SPARC expression has prognosticative value and SPARC is a potential therapeutic target for AML.
    The Journal of clinical investigation 03/2014; · 15.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While microRNA (miRNA) expression is known to be altered in a variety of human malignancies contributing to cancer development and progression, the potential role of miRNA dysregulation in malignant mast cell disease has not been previously explored. The purpose of this study was to investigate the potential contribution of miRNA dysregulation to the biology of canine mast cell tumors (MCTs), a well-established spontaneous model of malignant mast cell disease. We evaluated the miRNA expression profiles from biologically low-grade and biologically high-grade primary canine MCTs using real-time PCR-based TaqMan Low Density miRNA Arrays and performed real-time PCR to evaluate miR-9 expression in primary canine MCTs, malignant mast cell lines, and normal bone marrow-derived mast cells (BMMCs). Mouse mast cell lines and BMMCs were transduced with empty or pre-miR-9 expressing lentiviral constructs and cell proliferation, caspase 3/7 activity, and invasion were assessed. Transcriptional profiling of cells overexpressing miR-9 was performed using Affymetrix GeneChip Mouse Gene 2.0 ST arrays and real-time PCR was performed to validate changes in mRNA expression. Our data demonstrate that unique miRNA expression profiles correlate with the biological behavior of primary canine MCTs and that miR-9 expression is increased in biologically high grade canine MCTs and malignant cell lines compared to biologically low grade tumors and normal canine BMMCs. In transformed mouse malignant mast cell lines expressing either wild-type (C57) or activating (P815) KIT mutations and mouse BMMCs, miR-9 overexpression significantly enhanced invasion but had no effect on cell proliferation or apoptosis. Transcriptional profiling of normal mouse BMMCs and P815 cells possessing enforced miR-9 expression demonstrated dysregulation of several genes, including upregulation of CMA1, a protease involved in activation of matrix metalloproteases and extracellular matrix remodeling. Our findings demonstrate that unique miRNA expression profiles correlate with the biological behavior of canine MCTs. Furthermore, dysregulation of miR-9 is associated with MCT metastasis potentially through the induction of an invasive phenotype, identifying a potentially novel pathway for therapeutic intervention.
    BMC Cancer 02/2014; 14(1):84. · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The EGF receptor (EGFR) is amplified and mutated in glioblastoma (GBM) where its common mutation (EGFR, also called EGFRvIII) has a variety of activities that promote growth and inhibit death, thereby conferring a strong tumor-enhancing effect. This range of activities suggested to us that EGFR might exert its influence through pleiotropic effectors, and we hypothesized that microRNAs (miRs) might serve such a function. Here, we report that EGFR specifically suppresses one such miR, namely miR-9, through the Ras/PI3K/AKT axis that it is known to activate. Correspondingly, expression of miR-9 antagonizes the tumor growth advantage conferred by EGFR. Silencing of FOXP1, a miR-9 target, inhibits EGFR-dependent tumor growth and, conversely, de-repression of FOXP1, as a consequence of miR-9 inhibition, increases tumorigenicity. FOXP1 was sufficient to increase tumor growth in the absence of oncogenic EGFR signaling. The significance of these findings is underscored by our finding that high FOXP1 expression predicts poor survival in a cohort of 131 GBM patients. Collectively, these data suggest a novel regulatory mechanism by which EGFR suppression of miR-9 upregulates FOXP1 to increase tumorigenicity.
    Cancer Research 01/2014; · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs are being exploited for diagnosis, prognosis and monitoring of cancer and other diseases. Their high tissue specificity and critical role in oncogenesis provide new biomarkers for the diagnosis and classification of cancer as well as predicting patients' outcomes. MicroRNAs signatures have been identified for many human tumors, including colorectal cancer (CRC). In most cases, metastatic disease is difficult to predict and to prevent with adequate therapies. The aim of our study was to identify a microRNA signature for metastatic CRC that could predict and differentiate metastatic target organ localization. Normal and cancer tissues of three different groups of CRC patients were analyzed. RNA microarray and TaqMan Array analysis were performed on 66 Italian patients with or without lymph nodes and/or liver recurrences. Data obtained with the two assays were analyzed separately and then intersected to identify a primary CRC metastatic signature. Five differentially expressed microRNAs (hsa-miR-21, -103, -93, -31 and -566) were validated by qRT-PCR on a second group of 16 American metastatic patients. In situ hybridization was performed on the 16 American patients as well as on three distinct commercial tissues microarray (TMA) containing normal adjacent colon, the primary adenocarcinoma, normal and metastatic lymph nodes and liver. Hsa-miRNA-21, -93, and -103 upregulation together with hsa-miR-566 downregulation defined the CRC metastatic signature, while in situ hybridization data identified a lymphonodal invasion profile. We provided the first microRNAs signature that could discriminate between colorectal recurrences to lymph nodes and liver and between colorectal liver metastasis and primary hepatic tumor.
    PLoS ONE 01/2014; 9(6):e96670. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Molecular risk stratification of acute myeloid leukemia (AML) is largely based on genetic markers. However, epigenetic changes, including DNA methylation, deregulate gene expression and may also have prognostic impact. We evaluated the clinical relevance of integrating DNA methylation and genetic information in AML. Next-generation sequencing analysis of methylated DNA identified differentially methylated regions (DMRs) associated with prognostic mutations in older (≥ 60 years) cytogenetically normal (CN) patients with AML (n = 134). Genes with promoter DMRs and expression levels significantly associated with outcome were used to compute a prognostic gene expression weighted summary score that was tested and validated in four independent patient sets (n = 355). In the training set, we identified seven genes (CD34, RHOC, SCRN1, F2RL1, FAM92A1, MIR155HG, and VWA8) with promoter DMRs and expression associated with overall survival (OS; P ≤ .001). Each gene had high DMR methylation and lower expression, which were associated with better outcome. A weighted summary expression score of the seven gene expression levels was computed. A low score was associated with a higher complete remission (CR) rate and longer disease-free survival and OS (P < .001 for all end points). This was validated in multivariable models and in two younger (< 60 years) and two older independent sets of patients with CN-AML. Considering the seven genes individually, the fewer the genes with high expression, the better the outcome. Younger and older patients with no genes or one gene with high expression had the best outcomes (CR rate, 94% and 87%, respectively; 3-year OS, 80% and 42%, respectively). A seven-gene score encompassing epigenetic and genetic prognostic information identifies novel AML subsets that are meaningful for treatment guidance.
    Journal of Clinical Oncology 12/2013; · 18.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Emerging data demonstrate important roles for the TYRO3/AXL/MERTK receptor tyrosine kinase (TAM RTK) family in diverse cancers. We investigated the prognostic relevance of GAS6 expression, encoding the common TAM RTK ligand, in 270 adults (n=71 aged <60 years; n=199 aged 60 years) with de novo cytogenetically normal acute myeloid leukemia (CN-AML). Patients expressing GAS6 (GAS6+), especially those aged 60 years, more often failed to achieve a complete remission (CR). In all patients, GAS6+ patients had shorter disease-free (DFS) and overall (OS) survival than patients without GAS6 expression (GAS6-). After adjusting for other prognostic markers, GAS6+ predicted CR failure (P=0.02), shorter DFS (P=0.004) and OS (P=0.04). To gain further biologic insights, we derived a GAS6-associated gene-expression signature (P<0.001) that in GAS6+ patients included overexpressed BAALC and MN1, known to confer adverse prognosis in CN-AML, and overexpressed CXCL12, encoding stromal cell-derived factor, and its receptor genes, CXCR4 and CXCR7. This study reports for the first time that GAS6 expression is an adverse prognostic marker in CN-AML. Although GAS6 decoy receptors are not yet available in the clinic for GAS6+ CN-AML therapy, potential alternative therapies targeting GAS6+-associated pathways, e.g., CXCR4 antagonists may be considered for GAS6+ patients to sensitize them to chemotherapy.Leukemia accepted article preview online, 11 December 2013. doi:10.1038/leu.2013.371.
    Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 12/2013; · 10.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We identified a discrete number of microRNAs differentially expressed in benign or malignant mesothelial tissues. We focused on mir-145 whose levels were significantly downregulated in malignant mesothelial tissues and malignant pleural mesothelioma (MPM) cell lines as compared to benign tissues (pleura, peritoneum or cysts). We show that promoter hyper-methylation caused very low levels in MPM cell lines and specimens. Treatment of MPM cell lines with mir-145 agonists negatively modulated some protumorigenic properties of MPM cells, such as clonogenicity, cell migration and resistance to pemetrexed treatment. The main effector mechanism of the clonogenic death induced by mir-145 was that of accelerated senescence. We found that mir-145 targeted OCT4 via specific binding to its 3'-UTR. Increased intracellular levels of mir-145 decreased the levels of OCT4 and its target gene ZEB1, thereby counteracting the increase of OCT4 induced by pemetrexed treatment which is known to favor the development of chemoresistant cells. In line with this, reintroduction of OCT4 into mimic-145 treated cells counteracted the effects on clonogenicity and replicative senescence. This further supports the relevance of the mir-145-OCT4 interaction for the survival of MPM cells. The potential use of mir-145 expression levels to classify benign vs malignant mesothelial tissues and the differences between pemetrexed-induced senescence and that induced by the re-expression of mir-145 are discussed.Oncogene advance online publication, 18 November 2013; doi:10.1038/onc.2013.476.
    Oncogene 11/2013; · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: miR-17∼92 is a polycistronic microRNA (miR) cluster (consisting of miR-17, miR-18a, miR-19a, miR-19b, miR-20a, and miR-92a) which frequently is overexpressed in several solid and lymphoid malignancies. Loss- and gain-of-function studies have revealed the role of miR-17∼92 in heart, lung, and B-cell development and in Myc-induced B-cell lymphomas, respectively. Recent studies indicate that overexpression of this locus leads to lymphoproliferation, but no experimental proof that dysregulation of this cluster causes B-cell lymphomas or leukemias is available. To determine whether miR-17∼92- overexpression induces lymphomagenesis/leukemogenesis, we generated a B-cell-specific transgenic mouse model with targeted overexpression of this cluster in B cells. The miR-17∼92 overexpression was driven by the Eµ-enhancer and Ig heavy-chain promoter, and a 3' GFP tag was added to the transgene to track the miR expression. Expression analysis using Northern Blot and quantitative RT-PCR confirmed 2.5- to 25-fold overexpression of all six miRs in the transgenic mice spleens as compared with spleens from wild-type mice. Eµ-miR-17∼92 mice developed B-cell malignancy by the age of 12-18 mo with a penetrance of ∼80% (49% splenic B-cell lymphoproliferative disease, 28% lymphoma). At this stage mice exhibited severe splenomegaly with abnormal B-cell-derived white pulp expansion and enlarged lymph nodes. Interestingly, we found three classes of B-cell lymphomas/leukemias at varying grades of differentiation. These included expansion of CD19(+) and CD5(+) double-positive B cells similar to the aggressive form of human B-cell chronic lymphocytic leukemia, B220(+) CD43(+) B1-cell proliferation, and a CD19(+) aggressive diffuse large B-cell lymphoma-like disease, as assessed by flow cytometry and histopathological analysis.
    Proceedings of the National Academy of Sciences 10/2013; · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The success of tyrosine kinase inhibitors (TKIs) in treating chronic myeloid leukemia (CML) depends on the requirement for BCR-ABL1 kinase activity in CML progenitors. However, CML quiescent HSCs are TKI resistant and represent a BCR-ABL1 kinase-independent disease reservoir. Here we have shown that persistence of leukemic HSCs in BM requires inhibition of the tumor suppressor protein phosphatase 2A (PP2A) and expression - but not activity - of the BCR-ABL1 oncogene. Examination of HSCs from CML patients and healthy individuals revealed that PP2A activity was suppressed in CML compared with normal HSCs. TKI-resistant CML quiescent HSCs showed increased levels of BCR-ABL1, but very low kinase activity. BCR-ABL1 expression, but not kinase function, was required for recruitment of JAK2, activation of a JAK2/β-catenin survival/self-renewal pathway, and inhibition of PP2A. PP2A-activating drugs (PADs) markedly reduced survival and self-renewal of CML quiescent HSCs, but not normal quiescent HSCs, through BCR-ABL1 kinase-independent and PP2A-mediated inhibition of JAK2 and β-catenin. This led to suppression of human leukemic, but not normal, HSC/progenitor survival in BM xenografts and interference with long-term maintenance of BCR-ABL1-positive HSCs in serial transplantation assays. Targeting the JAK2/PP2A/β-catenin network in quiescent HSCs with PADs (e.g., FTY720) has the potential to treat TKI-refractory CML and relieve lifelong patient dependence on TKIs.
    The Journal of clinical investigation 09/2013; · 15.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are small 19- to 24-nt noncoding RNAs that have the capacity to regulate fundamental biological processes essential for cancer initiation and progression. In cancer, miRNAs may function as oncogenes or tumor suppressors. Here, we conducted global profiling for miRNAs in a cohort of stage 1 nonsmall cell lung cancers (n = 81) and determined that miR-486 was the most down-regulated miRNA in tumors compared with adjacent uninvolved lung tissues, suggesting that miR-486 loss may be important in lung cancer development. We report that miR-486 directly targets components of insulin growth factor (IGF) signaling including insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and phosphoinositide-3-kinase, regulatory subunit 1 (alpha) (PIK3R1, or p85a) and functions as a potent tumor suppressor of lung cancer both in vitro and in vivo. Our findings support the role for miR-486 loss in lung cancer and suggest a potential biological link to p53.
    Proceedings of the National Academy of Sciences 08/2013; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in mitochondrial DNA (mtDNA) have been shown to be an important cause of sensorineural hearing loss (SNHL). In this study, we performed a clinical and genetic analysis of 169 hearing-impaired patients and some of their relatives suffering from idiopathic SNHL, both familial and sporadic. The analysis of four fragments of their mtDNA identified several polymorphisms, the well known pathogenic mutation, A1555G, and some novel mutations in different genes, implying changes in the aminoacidic sequence. A novel sporadic mutation in 12S rRNA (MT-RNR1), not previously reported in the literature, was found in a case of possible aminoglycoside-induced progressive deafness.
    International Journal of Molecular Medicine 08/2013; · 1.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We performed genome-wide microRNA-sequencing (miRNA-seq) in primary cancer tissue from lung adenocarcinoma patients to identify markers for the presence of lymph node metastasis. Markers for lymph node metastasis identified by sequencing were validated in a separate cohort using QPCR. After additional validation in the TCGA dataset, functional characterization studies were performed in vitro. MiR-31 was upregulated in lung adenocarcinoma tissues from patients with lymph node metastases compared to those without lymph node metastases. We confirmed miR-31 to be up-regulated in lymph node positive patients in a separate patient cohort (p=0.009, t-test), and to be expressed higher in adenocarcinoma tissue than in matched normal adjacent lung tissues (p<0.0001, paired t-test). MiR-31 was then validated as a marker for lymph node metastasis in an external validation cohort of 233 lung adenocarcinoma cases of the TCGA (p=0.031, t-test). In vitro functional assays showed that miR-31 increases cell migration, invasion, and proliferation in an ERK1/2 signaling dependent manner. Of note, miR-31 was a significant predictor of survival in a multivariate cox regression model even when controlling for cancer staging. Exploratory in silico analysis showed that low expression of miR-31 is associated with excellent survival for T2N0 patients. We applied microRNA-seq to study microRNomes in lung adenocarcinoma tissue samples for the first time and identified potentially a microRNA predicting the presence of lymph node metastasis and survival outcomes in lung adenocarcinoma patients.
    Clinical Cancer Research 08/2013; · 7.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For many years breast cancer classification has been based on histology and immune-histochemistry. New techniques, more strictly related to cancer biology, partially succeeded in fractionating patients, correlated to survival and better predicted the patient response to therapy. Nowadays, great expectations arise from massive parallel or high throughput next generation sequencing. Cancer genomics has already revolutionized our knowledge of breast cancer molecular pathology, paving the way to the development of new and more effective clinical protocols. This review is focused on the most recent advances in the field of cancer genomics and epigenomics, including DNA alterations and driver gene mutations, gene fusions, DNA methylation and miRNA expression.
    Cancer letters 07/2013; · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute myeloid leukemia (AML) is hypothesized to be sustained by self-renewing leukemia stem cells (LSCs). Recently, gene-expression signatures (GES) from functionally defined AML LSC populations were reported, and expression of a 'core enriched' (CE) GES, representing 44 genes activated in LCSs, conferred shorter survival in cytogenetically normal (CN-)AML. The prognostic impact of the CE GES in the context of other molecular markers, including gene mutations and microRNA expression alterations, is unknown and its clinical utility is unclear. We studied associations of the CE GES with known molecular prognosticators, microRNA-expression profiles, and outcomes in 364 well-characterized CN-AML patients. A high CE score (CE(high)) associated with FLT3-ITD, WT1 and RUNX1 mutations, wild-type CEBPA and TET2, and high ERG, BAALC and miR-155 expression. CE(high) patients had a lower complete remission (CR) rate (P=0.003) and shorter disease-free (DFS, P<0.001) and overall survival (OS, P<0.001) than CE(low) patients. These associations persisted in multivariable analyses adjusting for other prognosticators (CR, P=0.02; DFS, P<0.001; OS, P<0.001). CE(high) status was accompanied by a characteristic microRNA-expression signature. Fifteen microRNAs were upregulated in both younger and older CE(high) patients, including microRNAs relevant for stem cell function. Our results support the clinical relevance of LSCs and improve risk stratification in AML.Leukemia accepted article preview online, 14 June 2013; doi:10.1038/leu.2013.181.
    Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 06/2013; · 10.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptor 3 (TLR3) is a key effector of the innate immune system against viruses. Activation of TLR3 exerts an antitumoral effect through a mechanism of action still poorly understood. Here we show that TLR3 activation by polyinosinic:polycytidylic acid induces up-regulation of microRNA-29b, -29c, -148b, and -152 in tumor-derived cell lines and primary tumors. In turn, these microRNAs induce reexpression of epigenetically silenced genes by targeting DNA methyltransferases. In DU145 and TRAMP-C1 prostate and MDA-MB-231 breast cancer cells, we demonstrated that polyinosinic:polycytidylic acid-mediated activation of TLR3 induces microRNAs targeting DNA methyltransferases, leading to demethylation and reexpression of the oncosuppressor retinoic acid receptor beta (RARβ). As a result, cancer cells become sensitive to retinoic acid and undergo apoptosis both in vitro and in vivo. This study provides evidence of an antitumoral mechanism of action upon TLR3 activation and the biological rationale for a combined TLR3 agonist/retinoic acid treatment of prostate and breast cancer.
    Proceedings of the National Academy of Sciences 05/2013; · 9.81 Impact Factor

Publication Stats

20k Citations
1,743.70 Total Impact Points

Institutions

  • 2005–2014
    • The Ohio State University
      • Department of Molecular Virology, Immunology and Medical Genetics
      Columbus, Ohio, United States
  • 1994–2014
    • Ludwig Institute for Cancer Research
      La Jolla, California, United States
  • 2013
    • Sapienza University of Rome
      • Department of Clinical and Molecular Medicine
      Roma, Latium, Italy
  • 1987–2013
    • Universita degli studi di Ferrara
      • • Department of Morphology, Surgery and Experimental Medicine
      • • Sezione di Genetica Medica
      • • Department of Engineering
      • • Department of Life Sciences and Biotechnologies
      Ferrara, Emilia-Romagna, Italy
  • 2012
    • Università degli Studi del Sannio
      Benevento, Campania, Italy
  • 2010
    • Ospedali Riuniti di Bergamo
      Bérgamo, Lombardy, Italy
    • University of Padova
      Padua, Veneto, Italy
  • 2009
    • Comprehensive Cancer Centers of Nevada
      Las Vegas, Nevada, United States
  • 2008
    • National Institutes of Health
      • Laboratory of Human Carcinogenesis
      Bethesda, MD, United States
    • Thomas Jefferson University
      Philadelphia, Pennsylvania, United States
    • University of Massachusetts Medical School
      • Department of Cancer Biology
      Worcester, MA, United States
  • 2007
    • Istituto di Cura e Cura a Carattere Scientifico Basilicata
      Rionero in Vulture, Basilicate, Italy
    • Istituto Dermopatico dell'Immacolata
      Roma, Latium, Italy
  • 2003
    • Telethon Institute of Genetics and Medicine
      Napoli, Campania, Italy
  • 2002–2003
    • University of Zagreb
      • School of Medicine (MEF)
      Zagreb, Grad Zagreb, Croatia
  • 1995–1999
    • Ludwig Institute for Cancer Research Sweden
      Uppsala, Uppsala, Sweden
  • 1992–1996
    • Cancer Research UK
      Londinium, England, United Kingdom