Markus Duschl

Technische Universität München, München, Bavaria, Germany

Are you Markus Duschl?

Claim your profile

Publications (2)0 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We introduce a project-based concept for teaching Augmented Reality (AR) applications in a lab course. The key element of the course is that the students develop a stand-alone application based on their own idea. The complexity of Augmented Reality applications requires software engineering skills and the integration of AR specific solutions to occurring problems. The students work self-responsible in a team with state-of-the-art methods and systems. Moreover they gain presentation and documentation skills. They define and work on their individual goals and challenges, which are assembled in a final application. The identification with the goal of the group creates passion and motivation for creating the AR application. Beside of the teaching concept we present some of the students’ applications in this paper. Furthermore we discuss the supervision effort, our experiences from the supervisors’ view and students’ feedback.
    Advances in Visual Computing - 6th International Symposium, ISVC 2010, Las Vegas, NV, USA, November 29 - December 1, 2010, Proceedings, Part II; 01/2010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Current advanced driver assistance systems (e.g. Emergency Brake Assistance, Lane Departure Warning, Lane Keeping Assistance and Blind Spot Detection) assist the driver in reacting to time-critical and unstable situations in a proper way. However, the anticipation of situations which are lying in the farer future is currently left primarily to the driver. In this paper, we present visualization concepts for concealed objects in order to support smart deceleration. Smart deceleration requires the anticipation of future traffic condition and the assistance of the driver in performing deceleration phases efficiently. In addition, safety is increased by reduction of potential criticality through the early deceleration phase. We have identified and categorized situations in which a broader anticipation is possible: situations with permanent obstacles, situations with temporarily stopped vehicles and situations with slower driving vehicles. An important issue when presenting information to the driver is the identification of the most suitable perspective. For visualizing the traffic situation in the surroundings of the driver’s car we established a virtual bird-eye perspective (VBEP), showing the traffic scene from a 3D viewpoint that is slightly raised above the driver and rigidly tethered to the car. This VBEP is a powerful concept to draw the driver’s attention to situations in the further future. On the basis of this concept we developed different visualizations and integrated them in the digital instrument cluster between the speedometer and the revolution counter.