Maximilian Kloess

Lawrence Berkeley National Laboratory, Berkeley, California, United States

Are you Maximilian Kloess?

Claim your profile

Publications (10)5.26 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most recent improvements in battery and electric vehicle (EV) technologies, combined with some favorable off-peak charging rates and an enormous PV potential, make California a prime market for electric vehicle as well as stationary storage adoption. However, EVs or plug-in hybrids, which can be seen as a mobile energy storage, connected to different buildings throughout the day, constitute distributed energy resources (DER) markets and can compete with stationary storage, onsite energy production (e.g. fuel cells, PV) at different building sites. Sometimes mobile storage is seen linked to renewable energy generation (e.g. PV) or as resource for the wider macro-grid by providing ancillary services for grid-stabilization. In contrast, this work takes a fundamentally different approach and considers buildings as the main hub for EVs/plug-in hybrids and considers them as additional resources for a building energy management system (EMS) to enable demand response or any other building strategy (e.g. carbon dioxide reduction). To examine the effect of, especially, electric storage technologies on building energy costs and carbon dioxide (CO2) emissions, a distributed-energy resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO2 emissions. The mixed-integer linear program is applied to a set of 139 different commercial building types in California, and the aggregated economic and environmental benefits are reported. To show the robustness of the results, different scenarios for battery performance parameters are analyzed. The results show that the number of EVs connected to the California commercial buildings depend mostly on the optimization strategy (cost versus CO2) of the building EMS and not on the battery performance parameters. The complexity of the DER interactions at buildings also show that a reduction in stationary battery costs increases the local PV adoption, but can also increase the fossil based onsite electricity generation, making an holistic optimization approach necessary for this kind of analyses.
    Applied Energy 11/2012; 104 (2013):711-722. · 5.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Connecting electric storage technologies to smartgrids will have substantial implications in building energy systems. Local storage will enable demand response. Mobile storage devices in electric vehicles (EVs) are in direct competition with conventional stationary sources at the building. EVs will change the financial as well as environmental attractiveness of on-site generation (e.g. PV, or fuel cells). In order to examine the impact of EVs on building energy costs and CO<sub>2</sub> emissions in 2020, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs or CO<sub>2</sub> emissions. The mixed-integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the aggregated economic and environmental benefits are reported. The research shows that considering second life of EV batteries might be very beneficial for commercial buildings.
    Vehicle Power and Propulsion Conference (VPPC), 2011 IEEE; 10/2011
  • Source
    Maximilian Kloess, Andreas Müller
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper investigates the effects of policy, fuel prices and technological progress on the Austrian passenger car fleet in terms of energy consumption and greenhouse gas (GHG) emissions. To analyse these effects a simulation model is used. We model the car fleet from a bottom-up perspective, with a detailed coverage of vehicle specifications and propulsion technologies. The model focuses on the technological trend toward electrified propulsion systems and their potential effects on the fleet's energy consumption and GHG emissions. To represent the impact of prices and income on the development of the fleet, we combine the fleet model with top-down demand models. We developed two scenarios for the time frame 2010-2050, using two different sets of assumptions for regulatory development and conditions of increasing fossil fuel prices and continuous technological progress in vehicle propulsion technologies. The results indicate that material cuts in energy consumption and GHG emissions can be achieved with changes to the political framework for passenger cars. Appropriate taxation of fuels and cars can stabilise demand for individual motorised transport and lead to an improvement in vehicle efficiency by fostering the adoption of efficient vehicle propulsion technologies and low carbon fuels.
    Energy Policy. 01/2011; 39(9):5045-5062.
  • Source
    Maximilian Kloess
    01/2009;
  • Source
    Maximilian KLOESS
    01/2009;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In diesem Beitrag wird analysiert, welche Marktpotentiale teil- und vollelektrifizierte Antriebe unter verschiedenen Rahmenbedingungen bis 2050 haben. Die Untersuchungen basieren auf den Ergebnissen des Projekts ALTANKRA "Szenarien der (volks)wirtschaftlichen Machbarkeit alternativer Antriebssysteme und Kraftstoffe im Bereich des individuellen Verkehrs bis 2050", das in der Programmlinie A3 "Austrian Advanced Automotive Technology" im Auftrag des BMVIT durchgeführt wurde. The following paper analyses market potentials of partly and fully electrified vehicle powertrain systems under different boundary conditions up to 2050. The analysis is based on the results of the project ALTANKRA "Scenarios of the economic feasibility of alternative powertrain systems and fuels for motor vehicles up to 2050", a project carried out in the scope of the Austrian Federal Ministry of Traffic, Innovation and Technology within the program line A3 "Austrian Advanced Automotive Technology".
    e & i Elektrotechnik und Informationstechnik 01/2008; 125(11):367-371.
  • e & i Elektrotechnik und Informationstechnik 01/2008; 125(11):367-371.
  • Source
    Maximilian KLOESS
  • Source
    Maximilian Kloess, Andreas Weichbold, Kurt Könighofer
    [Show abstract] [Hide abstract]
    ABSTRACT: Electrification of the powertrain to increase vehicle efficiency is probably the most important trend in automotive research and development today. In this paper partly and fully electrified propulsion systems for passenger vehicles are analysed from a technical, ecological and economic perspective. 8 powertrain systems with different degrees of electrification were investigated in detail starting from conventional drive with internal combustion engine to a pure electric drive. To identify the present and future potentials of each technology a detailed assessment of all propulsion systems was performed. Within this assessment the energy efficiency of each system was determined including detailed data on fuel consumption and greenhouse gas emissions of the vehicles (TTW-data). Furthermore the entire chains of energy conversion were investigated to receive overall energy-and greenhouse gas balances. For the analysis of their economic competitiveness an economic assessment of the aforementioned powertrain systems was performed considering investment costs for vehicles, fuel costs and taxes. The whole assessment was performed for the present state and dynamically for the next decades (2010-2050). The latter was done in the form of development scenarios where shifts within both framework conditions and technological development were assumed. The results give an overview on the potential of the single vehicle propulsion technologies from technical, environmental and economic standpoints. Keywords: list 3-5 keywords from the provided keyword list in 9,5pt italic, separated by commas 1 Motivation and Objectives Passenger cars are the most important means of transport for individual mobility in industrialised countries [2] today. Moreover they massively gain importance in developing countries. The major problems of passenger vehicles today are that they currently show low efficiency and are characterised by a high dependence on fossil fuels [3]. The electrification of the vehicle's powertrain is seen as an appropriate approach to face these problems. On the one hand vehicle efficiency can be increased significantly and on the other hand dependence on fossil fuels can be reduced by using electricity from renewable sources [3].
  • Source
    Maximilian Kloess
    [Show abstract] [Hide abstract]
    ABSTRACT: Kurzfassung: Es werden konventionelle und alternative Antriebsysteme für LKW aus wirtschaftlicher Sicht untersucht. Ausgehen vom Stand 2010 wird die Entwicklung der Kosten bis 2050 abgeschätzt. Es zeigt sich, dass Hybridsysteme bis 2020 in allen Fahrzeugklassen in den Gesamtkosten günstiger werden als konventionelle Antriebe. Bei leichten LKW (<3,5t) sind auch elektrische Antriebe wirtschaftlich darstellbar. Zur Ermittlung der Reduktionspotentiale für Energieverbrauch und Triebhausgasemissionen wird ein Modell der Österreichischen LKW Flotte verwendet anhand dessen Verbreitungsszenarien der Antriebsysteme entwickelt werden. Die Ergebnisse zeigen, dass durch Einsatz alternativer Antriebe eine Reduktion des fossilen Energieverbrauchs um bis zu 33% und der Treibhausgasemissionen um bis zu 55% bis 2030 möglich ist. 1 Motivation und zentrale Fragestellung Der Transport Sektor hatte in den letzten Jahren einen überproportionalen Zuwachs im Energieverbrauch zu verzeichnen. Dieser wurde vor allem durch den starken Anstieg des Straßenverkehrs verursacht wobei der Straßengüterverkehr dabei einen wesentlichen Treiber darstellte [1]. Diese Entwicklung bringt schwerwiegende ökologische, ökonomische und politische Probleme mit sich: steigende Schadstoff-und Treibhausgasemissionen, Abhängigkeit von fossilen Energieträgern, Importabhängigkeit. Effiziente und alternative Antriebsysteme können zur Lösung dieser Probleme beitragen. Ähnlich wie bei PKWs können auch bei Nutzfahrzeugen die Umweltauswirkungen durch effizientere und emissionsärmere Antriebsysteme reduziert werden. Je nach Fahrzeugkategorie kommen dabei unterschiedliche Konzepte in Betracht. Das Spektrum erstreckt sich von Erdgas-und Hybridantrieben bei schweren Nutzfahrzeugen (Klasse N2 & N3) bis hin zu voll elektrischen Systemen bei leichten Fahrzeugen (Klasse N1).