Roberto Zoncu

Massachusetts Institute of Technology, Cambridge, Massachusetts, United States

Are you Roberto Zoncu?

Claim your profile

Publications (29)492.34 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: The mTORC1 kinase is a master growth regulator that senses numerous environmental cues, including amino acids. The Rag GTPases interact with mTORC1 and signal amino acid sufficiency by promoting the translocation of mTORC1 to the lysosomal surface, its site of activation. The Rags are unusual GTPases in that they function as obligate heterodimers, which consist of RagA or B bound to RagC or D. While the loading of RagA/B with GTP initiates amino acid signaling to mTORC1, the role of RagC/D is unknown. Here, we show that RagC/D is a key regulator of the interaction of mTORC1 with the Rag heterodimer and that, unexpectedly, RagC/D must be GDP bound for the interaction to occur. We identify FLCN and its binding partners, FNIP1/2, as Rag-interacting proteins with GAP activity for RagC/D, but not RagA/B. Thus, we reveal a role for RagC/D in mTORC1 activation and a molecular function for the FLCN tumor suppressor.
    Molecular cell 10/2013; · 14.61 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Despite efforts to understand the interactions between nanoparticles and cells, the cellular processes that determine the efficiency of intracellular drug delivery remain unclear. Here we examine cellular uptake of short interfering RNA (siRNA) delivered in lipid nanoparticles (LNPs) using cellular trafficking probes in combination with automated high-throughput confocal microscopy. We also employed defined perturbations of cellular pathways paired with systems biology approaches to uncover protein-protein and protein-small molecule interactions. We show that multiple cell signaling effectors are required for initial cellular entry of LNPs through macropinocytosis, including proton pumps, mTOR and cathepsins. siRNA delivery is substantially reduced as ≅70% of the internalized siRNA undergoes exocytosis through egress of LNPs from late endosomes/lysosomes. Niemann-Pick type C1 (NPC1) is shown to be an important regulator of the major recycling pathways of LNP-delivered siRNAs. NPC1-deficient cells show enhanced cellular retention of LNPs inside late endosomes and lysosomes, and increased gene silencing of the target gene. Our data suggest that siRNA delivery efficiency might be improved by designing delivery vehicles that can escape the recycling pathways.
    Nature Biotechnology 06/2013; · 32.44 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The mechanistic target of rapamycin complex 1 (mTORC1) pathway regulates organismal growth in response to many environmental cues, including nutrients and growth factors. Cell-based studies showed that mTORC1 senses amino acids through the RagA-D family of GTPases (also known as RRAGA, B, C and D), but their importance in mammalian physiology is unknown. Here we generate knock-in mice that express a constitutively active form of RagA (RagA(GTP)) from its endogenous promoter. RagA(GTP/GTP) mice develop normally, but fail to survive postnatal day 1. When delivered by Caesarean section, fasted RagA(GTP/GTP) neonates die almost twice as rapidly as wild-type littermates. Within an hour of birth, wild-type neonates strongly inhibit mTORC1, which coincides with profound hypoglycaemia and a decrease in plasma amino-RagA(GTP/GTP) neonates, despite identical reductions in blood nutrient amounts. With prolonged fasting, wild-type neonates recover their plasma glucose concentrations, but RagA(GTP/GTP) mice remain hypoglycaemic until death, despite using glycogen at a faster rate. The glucose homeostasis defect correlates with the inability of fasted RagA(GTP/GTP) neonates to trigger autophagy and produce amino acids for de novo glucose production. Because profound hypoglycaemia does not inhibit mTORC1 in RagA(GTP/GTP) neonates, we considered the possibility that the Rag pathway signals glucose as well as amino-acid sufficiency to mTORC1. Indeed, mTORC1 is resistant to glucose deprivation in RagA(GTP/GTP) fibroblasts, and glucose, like amino acids, controls its recruitment to the lysosomal surface, the site of mTORC1 activation. Thus, the Rag GTPases signal glucose and amino-acid concentrations to mTORC1, and have an unexpectedly key role in neonates in autophagy induction and thus nutrient homeostasis and viability.
    Nature 12/2012; · 38.60 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The mTOR Complex 1 (mTORC1) pathway regulates cell growth in response to numerous cues, including amino acids, which promote mTORC1 translocation to the lysosomal surface, its site of activation. The heterodimeric RagA/B-RagC/D GTPases, the Ragulator complex that tethers the Rags to the lysosome, and the v-ATPase form a signaling system that is necessary for amino acid sensing by mTORC1. Amino acids stimulate the binding of guanosine triphosphate to RagA and RagB but the factors that regulate Rag nucleotide loading are unknown. Here, we identify HBXIP and C7orf59 as two additional Ragulator components that are required for mTORC1 activation by amino acids. The expanded Ragulator has nucleotide exchange activity toward RagA and RagB and interacts with the Rag heterodimers in an amino acid- and v-ATPase-dependent fashion. Thus, we provide mechanistic insight into how mTORC1 senses amino acids by identifying Ragulator as a guanine nucleotide exchange factor (GEF) for the Rag GTPases.
    Cell 09/2012; 150(6):1196-208. · 31.96 Impact Factor
  • Source
    Alejo Efeyan, Roberto Zoncu, David M Sabatini
    [show abstract] [hide abstract]
    ABSTRACT: The mechanistic target of rapamycin (mTOR) kinase controls growth and metabolism, and its deregulation underlies the pathogenesis of many diseases, including cancer, neurodegeneration, and diabetes. mTOR complex 1 (mTORC1) integrates signals arising from nutrients, energy, and growth factors, but how exactly these signals are propagated await to be fully understood. Recent findings have placed the lysosome, a key mediator of cellular catabolism, at the core of mTORC1 regulation by amino acids. A multiprotein complex that includes the Rag GTPases, Ragulator, and the v-ATPase forms an amino acid-sensing machinery on the lysosomal surface that affects the decision between cell growth and catabolism at multiple levels. The involvement of a catabolic organelle in growth signaling may have important implications for our understanding of mTORC1-related pathologies.
    Trends in Molecular Medicine 06/2012; 18(9):524-33. · 9.57 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The lysosome plays a key role in cellular homeostasis by controlling both cellular clearance and energy production to respond to environmental cues. However, the mechanisms mediating lysosomal adaptation are largely unknown. Here, we show that the Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis, colocalizes with master growth regulator mTOR complex 1 (mTORC1) on the lysosomal membrane. When nutrients are present, phosphorylation of TFEB by mTORC1 inhibits TFEB activity. Conversely, pharmacological inhibition of mTORC1, as well as starvation and lysosomal disruption, activates TFEB by promoting its nuclear translocation. In addition, the transcriptional response of lysosomal and autophagic genes to either lysosomal dysfunction or pharmacological inhibition of mTORC1 is suppressed in TFEB-/- cells. Interestingly, the Rag GTPase complex, which senses lysosomal amino acids and activates mTORC1, is both necessary and sufficient to regulate starvation- and stress-induced nuclear translocation of TFEB. These data indicate that the lysosome senses its content and regulates its own biogenesis by a lysosome-to-nucleus signalling mechanism that involves TFEB and mTOR.
    The EMBO Journal 03/2012; 31(5):1095-108. · 9.82 Impact Factor
  • The EMBO Journal 02/2012; · 9.82 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The lysosome plays a key role in cellular homeostasis by controlling both cellular clearance and energy production to respond to environmental cues. However, the mechanisms mediating lysosomal adaptation are largely unknown. Here, we show that the Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis, colocalizes with master growth regulator mTOR complex 1 (mTORC1) on the lysosomal membrane. When nutrients are present, phosphorylation of TFEB by mTORC1 inhibits TFEB activity. Conversely, pharmacological inhibition of mTORC1, as well as starvation and lysosomal disruption, activates TFEB by promoting its nuclear translocation. In addition, the transcriptional response of lysosomal and autophagic genes to either lysosomal dysfunction or pharmacological inhibition of mTORC1 is suppressed in TFEB-/- cells. Interestingly, the Rag GTPase complex, which senses lysosomal amino acids and activates mTORC1, is both necessary and sufficient to regulate starvation- and stress-induced nuclear translocation of TFEB. These data indicate that the lysosome senses its content and regulates its own biogenesis by a lysosome-to-nucleus signalling mechanism that involves TFEB and mTOR.
    The EMBO Journal 02/2012; · 9.82 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The mTOR complex 1 (mTORC1) protein kinase is a master growth regulator that is stimulated by amino acids. Amino acids activate the Rag guanosine triphosphatases (GTPases), which promote the translocation of mTORC1 to the lysosomal surface, the site of mTORC1 activation. We found that the vacuolar H(+)-adenosine triphosphatase ATPase (v-ATPase) is necessary for amino acids to activate mTORC1. The v-ATPase engages in extensive amino acid-sensitive interactions with the Ragulator, a scaffolding complex that anchors the Rag GTPases to the lysosome. In a cell-free system, ATP hydrolysis by the v-ATPase was necessary for amino acids to regulate the v-ATPase-Ragulator interaction and promote mTORC1 translocation. Results obtained in vitro and in human cells suggest that amino acid signaling begins within the lysosomal lumen. These results identify the v-ATPase as a component of the mTOR pathway and delineate a lysosome-associated machinery for amino acid sensing.
    Science 11/2011; 334(6056):678-83. · 31.20 Impact Factor
  • Source
    Roberto Zoncu, David M Sabatini
    [show abstract] [hide abstract]
    ABSTRACT: The oncogene-induced activation of signaling pathways involving the tumor suppressor proteins p53 and retinoblastoma is likely an important mechanism for preventing the proliferation of potential cancer cells (1, 2). This activation causes cells to exit the cell division cycle and enter a senescent state, which is characterized by major changes in chromatin structure that are thought to render senescence irreversible. Despite the absence of proliferation, senescent cells are not as quiescent as first thought, as they signal to their surrounding environment by activating a protein secretion program (3, 4). On page 966 of this issue, Narita et al. (5) show that to enable this secretory state, a senescent cell profoundly reorganizes its endomembrane system.
    Science 05/2011; 332(6032):923-5. · 31.20 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Autophagy is of increasing interest as a target for cancer therapy. We find that leucine deprivation causes the caspase-dependent apoptotic death of melanoma cells because it fails to appropriately activate autophagy. Hyperactivation of the RAS-MEK pathway, which is common in melanoma, prevents leucine deprivation from inhibiting mTORC1, the main repressor of autophagy under nutrient-rich conditions. In an in vivo tumor xenograft model, the combination of a leucine-free diet and an autophagy inhibitor synergistically suppresses the growth of human melanoma tumors and triggers widespread apoptosis of the cancer cells. Together, our study represents proof of principle that anticancer effects can be obtained with a combination of autophagy inhibition and strategies to deprive tumors of leucine.
    Cancer cell 05/2011; 19(5):613-28. · 25.29 Impact Factor
  • Source
    Roberto Zoncu, Alejo Efeyan, David M Sabatini
    [show abstract] [hide abstract]
    ABSTRACT: In all eukaryotes, the target of rapamycin (TOR) signalling pathway couples energy and nutrient abundance to the execution of cell growth and division, owing to the ability of TOR protein kinase to simultaneously sense energy, nutrients and stress and, in metazoans, growth factors. Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt. In the past few years, a significant advance in our understanding of the regulation and functions of mTOR has revealed the crucial involvement of this signalling pathway in the onset and progression of diabetes, cancer and ageing.
    Nature Reviews Molecular Cell Biology 01/2011; 12(1):21-35. · 37.16 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Phosphatidylinositol (PI) 4,5-bisphosphate (PI(4,5)P(2)) and its phosphorylated product PI 3,4,5-triphosphate (PI(3,4,5)P(3)) are two major phosphoinositides concentrated at the plasma membrane. Their levels, which are tightly controlled by kinases, phospholipases, and phosphatases, regulate a variety of cellular functions, including clathrin-mediated endocytosis and receptor signaling. In this study, we show that the inositol 5-phosphatase SHIP2, a negative regulator of PI(3,4,5)P(3)-dependent signaling, also negatively regulates PI(4,5)P(2) levels and is concentrated at endocytic clathrin-coated pits (CCPs) via interactions with the scaffold protein intersectin. SHIP2 is recruited early at the pits and dissociates before fission. Both knockdown of SHIP2 expression and acute production of PI(3,4,5)P(3) shorten CCP lifetime by enhancing the rate of pit maturation, which is consistent with a positive role of both SHIP2 substrates, PI(4,5)P(2) and PI(3,4,5)P(3), on coat assembly. Because SHIP2 is a negative regulator of insulin signaling, our findings suggest the importance of the phosphoinositide metabolism at CCPs in the regulation of insulin signal output.
    The Journal of Cell Biology 08/2010; 190(3):307-15. · 10.82 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The mTORC1 kinase promotes growth in response to growth factors, energy levels, and amino acids, and its activity is often deregulated in disease. The Rag GTPases interact with mTORC1 and are proposed to activate it in response to amino acids by promoting mTORC1 translocation to a membrane-bound compartment that contains the mTORC1 activator, Rheb. We show that amino acids induce the movement of mTORC1 to lysosomal membranes, where the Rag proteins reside. A complex encoded by the MAPKSP1, ROBLD3, and c11orf59 genes, which we term Ragulator, interacts with the Rag GTPases, recruits them to lysosomes, and is essential for mTORC1 activation. Constitutive targeting of mTORC1 to the lysosomal surface is sufficient to render the mTORC1 pathway amino acid insensitive and independent of Rag and Ragulator, but not Rheb, function. Thus, Rag-Ragulator-mediated translocation of mTORC1 to lysosomal membranes is the key event in amino acid signaling to mTORC1.
    Cell 04/2010; 141(2):290-303. · 31.96 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: OCRL, whose mutations are responsible for Lowe syndrome and Dent disease, and INPP5B are two similar proteins comprising a central inositol 5-phosphatase domain followed by an ASH and a RhoGAP-like domain. Their divergent NH2-terminal portions remain uncharacterized. We show that the NH2-terminal region of OCRL, but not of INPP5B, binds clathrin heavy chain. OCRL, which in contrast to INPP5B visits late stage endocytic clathrin-coated pits, was earlier shown to contain another binding site for clathrin in its COOH-terminal region. NMR structure determination further reveals that despite their primary sequence dissimilarity, the NH2-terminal portions of both OCRL and INPP5B contain a PH domain. The novel clathrin-binding site in OCRL maps to an unusual clathrin-box motif located in a loop of the PH domain, whose mutations reduce recruitment efficiency of OCRL to coated pits. These findings suggest an evolutionary pressure for a specialized function of OCRL in bridging phosphoinositide metabolism to clathrin-dependent membrane trafficking.
    The EMBO Journal 07/2009; 28(13):1831-42. · 9.82 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The recent identification of several novel endocytic compartments has challenged our current understanding of the topological and functional organization of the endocytic pathway. Using quantitative single vesicle imaging and acute manipulation of phosphoinositides we show that APPL endosomes, which participate in growth factor receptor trafficking and signaling, represent an early endocytic intermediate common to a subset of clathrin derived endocytic vesicles and macropinosomes. Most APPL endosomes are precursors of classical PI3P positive endosomes, and PI3P plays a critical role in promoting this conversion. Depletion of PI3P causes a striking reversion of Rab5 positive endosomes to the APPL stage, and results in enhanced growth factor signaling. These findings reveal a surprising plasticity of the early endocytic pathway. Importantly, PI3P functions as a switch to dynamically regulate maturation and signaling of APPL endosomes.
    Cell 04/2009; 136(6):1110-21. · 31.96 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Total Internal Reflection Fluorescence Microscopy (TIRFM) allows us to image fluorescenttagged proteins near the plasma membrane of living cells with high spatial-temporal resolution. Using TIRFM imaging of GFP-tagged clathrin endocytic proteins, areas of fluorescence are observed as overlapping spots of different sizes and durations. Standard procedures to measure protein-protein colocalization of dual labeled samples threshold the original graylevel images to segment areas covered by different proteins. This binary logic is not appropriate as it leaves a free tuning parameter which can influence the conclusions. Moreover, these procedures rely on simple statistical analysis based on correlation coefficients or visual inspection. We propose a probabilistic model to examine spatial-temporal dependencies. Image sequences of two proteins are modeled as a realization of a bivariate fuzzy temporal random set. Spatial-temporal dependencies are described by means of the pair-correlation function and the K-function and are tested using a Monte Carlo test. Five simulated image sequences were used to validate the performance of the procedure. Spatial and spatial-temporal dependencies were generated using a linked pairs model and a Poisson cluster model for the germs. To demonstrate the applicability in addressing current biological questions, we applied the procedure to fluorescent-tagged proteins involved in endocytosis (Clathrin, Hip1R, Epsin, and Caveolin). Results show that this procedure allows biologists to automatically quantify dependencies between molecules in a more formal and robust way. Image sequences and a Matlab toolbox for simulation and testing are available at http://www.uv.es/tracs/.
    Journal of computational biology: a journal of computational molecular cell biology 12/2008; 15(9):1221-36. · 1.69 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Analyzing spatio-temporal dependencies between different types of events is highly relevant to numerous biological phenomena (e.g. signalling and trafficking) especially as advances in probes and microscopy have facilitated imaging of dynamic processes in living cells. For many types of events, the segmented areas can overlap spatially and temporally forming random clumps. In this paper, we model binary image sequences of two different event types as a realization of a bivariate temporal random set and propose a non-parametric approach to quantify spatial and spatio-temporal interrelations using the pair-correlation, cross-covariance and the Ripley IK functions. Based on these summary statistics we propose a randomization procedure to test independence between event types by applying random toroidal shifts and Monte Carlo tests. A simulation study assessed the performance of the proposed estimators and showed that these statistics capture the spatio-temporal dependencies accurately. The estimation of the spatio-temporal interval of interactions was also obtained. The method was successfully applied to analyze the interdependencies of several endocytic proteins using image sequences of living cells and validated the procedure as a new way to automatically quantify dependencies between proteins in a formal and robust manner.
    IEEE Transactions on Pattern Analysis and Machine Intelligence 10/2008; 30(9):1659-71. · 4.80 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Overexpression of the epidermal growth factor receptor (EGFR) in epithelial tumors is associated with poor prognosis and is the target for a number of cancer therapeutics. Monoclonal antibody (mAb) 806 is a novel anti-EGFR antibody with significant therapeutic efficacy in tumor models when used as a single agent, and displays synergistic antitumor activity in combination with other EGFR therapeutics. Unlike other EGFR antibodies, mAb 806 is selective for tumor cells and does not bind to normal tissue, making it an ideal candidate for generation of radioisotope or toxin conjugates. Ideally, antibodies suited to these therapeutic applications must bind to and actively internalize their cognate receptor. We investigated the intracellular trafficking of fluorescently tagged mAb 806 in live cells and analyzed its biodistribution in a tumor xenografted nude mouse model. Following binding to EGFR, mAb 806 was internalized through dynamin-dependent, clathrin-mediated endocytosis. Internalized mAb 806 localized to early endosomes and subsequently trafficked to and accumulation in lysosomal compartments. Furthermore, biodistribution analysis in nude mice showed specific uptake and retention of radiolabeled mAb 806 to human tumor xenografts. These results highlight the potential use of mAb 806 for generation of conjugates suitable for diagnostic and therapeutic use in patients with EGFR-positive malignancies.
    Neoplasia (New York, N.Y.) 01/2008; 9(12):1099-110. · 5.48 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Mutations in the inositol 5-phosphatase OCRL are responsible for Lowe syndrome, whose manifestations include mental retardation and renal Fanconi syndrome. OCRL has been implicated in membrane trafficking, but disease mechanisms remain unclear. We show that OCRL visits late-stage, endocytic clathrin-coated pits and binds the Rab5 effector APPL1 on peripheral early endosomes. The interaction with APPL1, which is mediated by the ASH-RhoGAP-like domains of OCRL and is abolished by disease mutations, provides a link to protein networks implicated in the reabsorptive function of the kidney and in the trafficking and signaling of growth factor receptors in the brain. Crystallographic studies reveal a role of the ASH-RhoGAP-like domains in positioning the phosphatase domain at the membrane interface and a clathrin box protruding from the RhoGAP-like domain. Our results support a role of OCRL in the early endocytic pathway, consistent with the predominant localization of its preferred substrates, PI(4,5)P(2) and PI(3,4,5)P(3), at the cell surface.
    Developmental Cell 10/2007; 13(3):377-90. · 12.86 Impact Factor

Publication Stats

2k Citations
492.34 Total Impact Points

Institutions

  • 2012
    • Massachusetts Institute of Technology
      Cambridge, Massachusetts, United States
  • 2010–2012
    • Whitehead Institute for Biomedical Research
      • Department of Biology
      Cambridge, Massachusetts, United States
  • 2006–2010
    • Yale University
      • Department of Cell Biology
      New Haven, CT, United States
  • 2008
    • Yale-New Haven Hospital
      New Haven, Connecticut, United States
  • 2006–2007
    • University of Valencia
      • Department of Informatic
      Valencia, Valencia, Spain
  • 2002–2007
    • Howard Hughes Medical Institute
      Maryland, United States