Zhiying Huang

Sun Yat-Sen University, Shengcheng, Guangdong, China

Are you Zhiying Huang?

Claim your profile

Publications (18)68.79 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: : Triptolide, an active ingredient extracted from the Chinese herb Tripterygium wilfordii Hook f., has multiple pharmacological properties, including anti-inflammatory, immune-modulatory, and anti-proliferative activities. However, the hepatotoxicity of triptolide always limits its clinical applications.
  • Jie Zhou · Chen Xi · Wenwen Wang · Yanqin Yang · Yuwen Qiu · Zhiying Huang
    [Show abstract] [Hide abstract]
    ABSTRACT: Triptolide (TP), a major bioactive component isolated from the traditional Chinese herb Tripterygium wilfordii Hook f. (TWHF), has been shown to exert various pharmacological effects. However, the severe toxicity of TP prevents wide clinical use. In a previous study, we reported that TP-induced mitochondria-dependent apoptosis in cardiomyocytes is mediated by reactive oxygen species (ROS). Autophagy is a cellular self-digestion process and is one of the first lines of defense against oxidative stress. Additionally, recent evidence suggests that autophagy can selectively eliminate damaged mitochondria. This study investigated the role of autophagy in TP-induced cardiotoxicity. We investigated the effects of autophagy in combination with TP on apoptosis, ROS and mitochondrial function. Rat cardiomyocytes were pre-treated with chloroquine or rapamycin followed by TP. The augmentation of autophagy with rapamycin in the presence of TP substantially ameliorated the detrimental effects induced by TP, while suppression of autophagy by chloroquine accelerates TP-induced cellular damage. In addition, pre-treated with rapamycin before TP administration also attenuated TP-induced damage in Balb/c mice heart tissues. Taken together, these results suggest that TP-induced cell death can be modified by autophagy. Furthermore, induction of autophagy by rapamycin may be a potential cardioprotective role against TP-induced cardiotoxicity by facilitating removal of dysfunctional mitochondria. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
    Toxicology Letters 05/2015; 236(3). DOI:10.1016/j.toxlet.2015.05.013 · 3.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cisplatin is a potent anti-cancer agent for various types of tumors. However, the clinical use of cisplatin is often limited by its nephrotoxicity. This study reports that WZ tablet (WZ, a preparation of an ethanol extract of Schisandra sphenanthera) mitigates cisplatin-induced toxicity in renal epithelial HK-2 cells and in mice. Pretreatment of HK-2 cells with WZ ameliorated cisplatin-induced cytotoxicity caused by oxidative stress, as was demonstrated by reductions in the levels of reactive oxygen species (ROS) and increased levels of glutathione (GSH). WZ facilitated the nuclear accumulation of the transcription factor NF-E2-related factor 2 (Nrf2) and the subsequent expression of its target genes such as quinine oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1) and glutamate cysteine ligase (GCL). Protective effects of WZ on cisplatin-induced nephrotoxicity were also observed in mice. WZ attenuated cisplatin-induced renal dysfunction, structural damage and oxidative stress. The nuclear accumulation of Nrf2 and its target genes were increased by WZ treatment. Taken together, these findings demonstrated WZ have a protective effect against cisplatin-induced nephrotoxicity by activation of the Nrf2 mediated defense response, which is of significant importance for therapeutic intervention in cisplatin induced renal injury. Copyright © 2015 Elsevier GmbH. All rights reserved.
    Phytomedicine 03/2015; 31(5). DOI:10.1016/j.phymed.2015.03.003 · 2.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diammonium glycyrrhizinate (DG), an active compound extracted and purified from liquorices root, has been reported to exhibit antioxidant and anti-inflammatory properties. The aim of this study was to investigate the effect and underlying mechanisms of DG on the hepatotoxicity induced by valproic acid (VPA). DG at the dose of 60 mg/kg was orally administered with VPA (100 mg/kg) to mice once daily for 14 consecutive days. DG treatment attenuated VPA-induced liver dysfunction, structural damage, glutathione depletion and decrease in antioxidant enzymes in BALB/C mice. DG prevented VPA-induced depletion of cytosolic nuclear factor E2-related factor 2 (Nrf2) and suppression of nuclear translocation of Nrf2, which, in turn, up-regulated phase II/antioxidant enzyme activities. The effects of VPA and DG on Nrf2 expression in HepG2 cells were in consistent with that of mice. Furthermore, an increase in the nuclear levels of nuclear factor-kappaB (NF-κB) was observed in the livers of VPA-treated mice that coincided with induction of inflammatory cytokines. In contrast, DG inhibited NF-κB translocation and that subsequently decreased inflammatory cytokines. Taken together, these results demonstrate that DG attenuates VPA-induced liver injury through increasing the expression of Nrf2 mediated phase II/antioxidant enzymes and simultaneously decreasing the expression of inflammatory mediators.
    Food and Chemical Toxicology 08/2014; 73. DOI:10.1016/j.fct.2014.08.009 · 2.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Triptolide, the major active component of Tripterygium wilfordii Hook f. (TWHF), has a wide range of pharmacological activities. However, the toxicities of triptolide, particularly the hepatotoxicity, limit its clinical application. The hepatotoxicity of triptolide has not been well characterized yet. The aim of this study was to investigate the role of NF-E2-related factor 2 (Nrf2) in triptolide-induced toxicity and whether activation of Nrf2 could protect against triptolide-induced hepatotoxicity. The results showed that triptolide caused oxidative stress and cell damage in HepG2 cells, and these toxic effects could be aggravated by Nrf2 knockdown or be counteracted by overexpression of Nrf2. Treatment with a typical Nrf2 agonist, sulforaphane (SFN), attenuated triptolide-induced liver dysfunction, structural damage, glutathione depletion and decrease in antioxidant enzymes in BALB/C mice. Moreover, the hepatoprotective effect of SFN on triptolide-induced liver injury was associated with the activation of Nrf2 and its downstream targets. Collectively, these results indicate that Nrf2 activation protects against triptolide-induced hepatotoxicity.
    PLoS ONE 07/2014; 9(7):e100685. DOI:10.1371/journal.pone.0100685 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activating transcription factor (ATF) 4 is involved in the regulation of oxidative stress in fibroblasts and neurons. The role of ATF4 in hepatocytes, however, is unknown. The aim of this study was to investigate the role of ATF4 in hepatocytes in oxidative stress under a high-fat diet (HFD). Here, we showed that palmitate-stimulated reactive oxygen species (ROS) production and triglyceride (TG) accumulation is blocked by ATF4 deficiency in primary hepatocytes. Consistently, HFD-induced oxidative stress, TG accumulation and expression of cytochrome P450, family 2, subfamily, polypeptide 1 (CYP2E1) are also blocked by knocking down ATF4 expression in the mouse liver. This suggests that ATF4 might regulate oxidative stress via CYP2E1 under an HFD. In addition, we observed that expression of CYP2E1 is indirectly regulated by ATF4 in a cAMP-responsive element binding protein (CREB)-dependent manner, which can directly activate the CYP2E1 promoter activity. Notably, ATF4-stimulated ROS production is inhibited in vivo by treatment with diallyl sulphide, a selective CYP2E1 inhibitor. Finally, we showed that ATF4 expression in the liver is responsible for the protective effects against HFD-induced CYP2E1 expression, oxidative stress, and TG accumulation. Taken together, these observations suggest that ATF4 is a novel regulator of oxidative stress as well as accumulation of TG in response to HFD.
    Journal of Cellular and Molecular Medicine 01/2014; 18(1):80-90. DOI:10.1111/jcmm.12166 · 3.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Taxus yunnanensis (T. yunnanensis) is endemic to China and has been used in traditional medicine for the treatment of cancer, diabetic ailments and others. Paclitaxel is a representative antitumor compound in the Taxus species. The pharmacokinetic behavior of paclitaxel after oral administration of the crude extract of T. yunnanensis has not been investigated. This study attempts to compare the pharmacokinetics of paclitaxel after oral administration of the crude extract of the twigs and leaves of T. yunnanensis and pure paclitaxel. A UPLC and a UPLC/MS/MS analysis method were developed for the determination of paclitaxel in T. yunnanensis extract and in the comparative pharmacokinetic study. Caco-2 cells were used to investigate the transport profile of paclitaxel in vitro. In the pharmacokinetic study, rats were randomly grouped and administered with T. yunnanensis extract or pure paclitaxel. The results showed that the AUC and Cmax of paclitaxel in rats receiving the T. yunnanensis extract were significantly increased than those receiving the pure paclitaxel, and the in vitro Caco-2 cell monolayer transport study found that the coexisting constituents in the extract of T. yunnanensis could inhibit the efflux of paclitaxel. These findings suggested that the oral absorption and bioavailability of paclitaxel in T. yunnanensis extract was remarkably higher when compared with the pure paclitaxel, and the coexisting constituents in the T. yunnanensis extract might play an important role for the enhancement of the oral absorption and bioavailability of paclitaxel.
    Fitoterapia 06/2013; 90. DOI:10.1016/j.fitote.2013.06.013 · 2.22 Impact Factor
  • Source
    Zizhang Ouyang · Shaohua Zhu · Jing Jin · Jia Li · Yuwen Qiu · Min Huang · Zhiying Huang
    [Show abstract] [Hide abstract]
    ABSTRACT: Cyclosporin A (CsA) induces renal tubular epithelial cells apoptosis and necrosis following in vitro exposure. The mechanisms of CsA-induced apoptosis have been studied intensively, whereas the mechanisms of necrosis remain to be elucidated. Necroptosis has been described as programmed necrosis. This study investigated the ability of CsA to induce necroptosis in the rat tubular cell line NRK-52E. The NRK-52E cells were incubated with CsA for 24 hours with or without necrostatin-1 (Nec-1). The majority of the NRK-52E cells died of necrosis as indicated by LDH leakage, Hoechst 33342/PI staining, and flow cytometry analysis. Cell death was significantly reduced by Nec-1 pretreated before CsA exposure. CsA-induced apoptosis and necrosis were also compared in NRK-52E cells with or without knockdown of receptor interaction protein 3 (RIP3) expression using small interfering RNA. Moreover, the role of reactive oxygen species (ROS) in CsA-induced cell death was also attempted. The result suggests that necroptosis contributes to the CsA-induced cytotoxicity in NRK-52E cells. Meanwhile, RIP3 and ROS are involved in CsA-induced necroptosis. To our knowledge, this is the first report on necroptosis in CsA-induced renal tubular cell death pathways, which might offer a novel protective target for CsA nephrotoxicity.
    Pharmazie 08/2012; 67(8):725-32. DOI:10.1691/ph.2012.1837 · 1.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Triptolide is a major active ingredient of the Chinese herb Tripterygium wilfordii Hook f. (TWHF) and has been shown to possess multiple biological activities, such as anti-inflammatory, anti-fertility, anti-neoplastic and immunosuppressive activities. However, severe adverse effects, especially nephrotoxicity, limit its clinical use. Oxidative stress has been reported to be involved in triptolide-induced renal injury, but the existence of other mechanisms remains unclear. This study aimed to investigate whether NF-E2-related factor 2 (Nrf2), which is an antioxidant nuclear transcription factor, plays a protective role in defense against triptolide-induced toxicity in a normal rat kidney cell line (NRK-52E). Triptolide induced oxidative stress in NRK-52E cells by induction of reactive oxygen species (ROS) and depletion of glutathione (GSH), which resulted in a rapid increase in Nrf2 nuclear accumulation, as well as an induction of antioxidant response element (ARE)-driven genes. In addition, overexpression of Nrf2 protected against triptolide-induced cell death, whereas knockdown of Nrf2 by its specific small interfering RNA resulted in increased cytotoxicity. We also found that Nrf2 knockdown enhanced both the production of ROS and the depletion of GSH. Taken together, these results indicate that activation of Nrf2 plays a protective role against triptolide-induced cytotoxicity in NRK-52E cells through the counteraction of oxidative stress.
    Toxicology Letters 07/2012; 213(2):194-202. DOI:10.1016/j.toxlet.2012.07.008 · 3.36 Impact Factor
  • Shaohua Zhu · Yan Wang · Meiwan Chen · Jing Jin · Yuwen Qiu · Min Huang · Zhiying Huang
    [Show abstract] [Hide abstract]
    ABSTRACT: Schisandrin B (Sch B) is an active ingredient of the fruit of Schisandra chinensis. It has many therapeutic effects arising from its tonic, sedative, antitussive and antiaging activities and is also used in the treatment of viral and chemical hepatitis. The aim of this study was to investigate the protective effects of Sch B on cyclosporine A (CsA)-induced nephrotoxicity in mice and HK-2 cells (a human proximal tubular epithelial cell line). After gavage with Sch B (20 mg/kg) or olive oil (vehicle), mice received CsA (30 mg/kg) by subcutaneous injection once daily for four weeks. Renal function, histopathology, and tissue glutathione (GSH) and malondialdehyde (MDA) levels were evaluated after the last treatment. The effects of Sch B on CsA-induced oxidative damage in HK-2 cells were investigated by measuring cell viability, the release of lactate dehydrogenase (LDH), the level of reactive oxygen species (ROS), and the cellular GSH and ATP concentrations. Cellular apoptosis was assessed by flow cytometry. Treatment with Sch B in CsA-treated mice significantly suppressed the elevation of blood urea nitrogen (BUN) and serum creatinine levels and attenuated the histopathological changes. Additionally, Sch B also decreased renal MDA levels and increased GSH levels in CsA-treated mice. Using an in vitro model, Sch B (2.5, 5 and 10 μM) significantly increased the cell viability and reduced LDH release and apoptosis induced by CsA (10 μM) in HK-2 cells. Furthermore, Sch B increased the intracellular GSH and ATP levels and attenuated CsA-induced ROS generation. In conclusion, Sch B appears to protect against CsA-induced nephrotoxicity by decreasing oxidative stress and cell death.
    The American Journal of Chinese Medicine 05/2012; 40(3):551-66. DOI:10.1142/S0192415X12500425 · 2.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aristolochic acid (AA), derived from the Aristolochia species, has been associated with aristolochic acid nephropathy (AAN), which has emerged as a worldwide disease. Aristolochic acid I (AAI) is the main ingredient of AA, and the underlying mechanisms for AAI-induced nephrotoxicity are still unclear. In this study, we investigated whether endoplasmic reticulum (ER) stress was involved in AAI-induced nephrotoxicity. The results showed that treatment of HK-2 cells (a human proximal tubular epithelial cell line) with AAI caused an increase in eukaryotic initiation factor-2α (eIF2α) phosphorylation, X-box binding protein 1 (XBP1) mRNA splicing and the expression of glucose-regulated protein (GRP) 78 and CAAT/enhancer-binding protein-homologous protein (CHOP). These events represent typical markers of the ER stress-related signaling pathway. Pretreatment with 4-phenylbutyrate (4-PBA) or salubrinal (Sal) significantly inhibited AAI-induced apoptosis, indicating the role of ER stress in AAI-induced apoptosis. In addition, AAI-induced cell death followed an increase of reactive oxygen species (ROS) formation in HK-2 cells. Pretreatment with N-acetyl cysteine (NAC) or glutathione (GSH) significantly inhibited AAI-induced ER stress proteins and cell death, suggesting that ROS mediate AAI-induced ER stress. Taken together, these results suggest that the ER stress response is involved in apoptosis induced by AAI in HK-2 cells, thus offering a new insight into the nephrotoxicity of AAI.
    Toxicology in Vitro 03/2012; 26(5):663-71. DOI:10.1016/j.tiv.2012.03.005 · 3.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aloe-emodin (AE; 1,8-dihydroxy-3-hydroxymethyl-9,10-anthracenedione) is one of the primary active compounds in total rhubarb anthraquinones (TRAs), which induce nephrotoxicity in rats. However, it is still not known whether AE has a similar effect on human kidney cells. In this study, 3-(4,5,-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays showed that AE decreases the viability of HK-2 cells (a human proximal tubular epithelial cell line) in a dose- and time-dependent manner. AE induced G2/M arrest of cell cycle in HK-2 cells, which was detected with propidium iodide (PI) staining. This apoptosis was further investigated by Hoechst staining, transmission electron microscopy (TEM), DNA fragmentation, and Annexin V/PI staining. Apoptosis of the cells was associated with caspase 3 activation, which was detected by Western blot analysis and a caspase activity assay. In addition, changes in the endoplasmic reticulum (ER) ultrastructure as observed by TEM showed the effects of AE on ER. Treatment with AE also resulted in an increase in eukaryotic initiation factor-2α (eIF-2α) phosphorylation, X-box binding protein 1 (XBP1) mRNA splicing, c-Jun N-terminal kinase (JNK) phosphorylation, glucose-regulated protein (GRP) 78 and CAAT/enhancer-binding protein-homologous protein (CHOP) accumulation. These results suggest that AE induces ER stress in HK-2 cells, which is involved in AE-induced apoptosis. In conclusion, AE induces apoptosis in HK-2 cells, and the ER stress is involved in AE-induced apoptosis in vitro. The implications of the toxic effects of AE for clinical use are unclear and these findings should be taken into account in the risk assessment for human exposure.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 12/2011; 50(3-4):1149-58. DOI:10.1016/j.fct.2011.12.018 · 2.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wuzhi tablet (WZ, registration no. in China: Z20025766) is a preparation of an ethanol herb extract of Wuweizi (Schisandra sphenanthera) containing 7.5 mg Schisantherin A per tablet. It was reported recently that WZ could significantly increase the blood concentrations of tacrolimus, which might be due to the inhibitory effect of WZ and its ingredients on P-gp and/or CYP450 activity. Paclitaxel is a substrate of the efflux transporter P-gp, and is mainly metabolized by CYP450 enzymes in the liver. Therefore, the purpose of this study was to investigate whether and how WZ affects the pharmacokinetics of paclitaxel in rats. After pretreatment with WZ, there were significant increases in the AUC(0-24h) of oral paclitaxel (from 280.8 ± 97.3 to 543.5 ± 115.2 h ng/mL; p < 0.05) and C(max) (from 44.6 ± 16.4 to 86.8 ± 16.1 ng/mL; p < 0.05). The pharmacokinetic data for i.v. paclitaxel with WZ showed a relatively small (when compared against oral paclitaxel) but still significant increase in AUC(0-24h) (from 163.6 ± 22.1 to 212.7 ± 17.7 h ng/mL; p < 0.05) and a decrease in clearance (from 3.2 ± 0.6 to 2.2 ± 0.3 L/h/kg; p < 0.05). Thus, the presence of WZ improved the systemic exposure of paclitaxel in rats. The herb-drug interaction between WZ and paclitaxel should be taken into consideration in clinical use.
    Phytotherapy Research 08/2011; 25(8):1250-3. DOI:10.1002/ptr.3407 · 2.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously showed that leucine deprivation decreases abdominal fat mass largely by increasing energy expenditure, as demonstrated by increased lipolysis in white adipose tissue (WAT) and uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT). The goal of the present study was to investigate the possible involvement of central nervous system (CNS) in this regulation and elucidate underlying molecular mechanisms. For this purpose, levels of genes and proteins related to lipolysis in WAT and UCP1 expression in BAT were analyzed in wild-type mice after intracerebroventricular administration of leucine or corticotrophin-releasing hormone antibodies, or in mice deleted for three β-adrenergic receptors, after being maintained on a leucine-deficient diet for 7 d. Here, we show that intracerebroventricular administration of leucine significantly attenuates abdominal fat loss and blocks activation of hormone sensitive lipase in WAT and induction of UCP1 in BAT in leucine-deprived mice. Furthermore, we provide evidence that leucine deprivation stimulates fat loss by increasing expression of corticotrophin-releasing hormone in the hypothalamus via activation of stimulatory G protein/cAMP/protein kinase A/cAMP response element-binding protein pathway. Finally, we show that the effect of leucine deprivation on fat loss is mediated by activation of the sympathetic nervous system. These results suggest that CNS plays an important role in regulating fat loss under leucine deprivation and thereby provide novel and important insights concerning the importance of CNS leucine in the regulation of energy homeostasis.
    Molecular Endocrinology 06/2011; 25(9):1624-35. DOI:10.1210/me.2011-0028 · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that serum insulin levels decrease threefold and blood glucose levels remain normal in mice fed a leucine-deficient diet, suggesting increased insulin sensitivity. The goal of the current study is to investigate this possibility and elucidate the underlying cellular mechanisms. Changes in metabolic parameters and expression of genes and proteins involved in regulation of insulin sensitivity were analyzed in mice, human HepG2 cells, and mouse primary hepatocytes under leucine deprivation. We show that leucine deprivation improves hepatic insulin sensitivity by sequentially activating general control nonderepressible (GCN)2 and decreasing mammalian target of rapamycin/S6K1 signaling. In addition, we show that activation of AMP-activated protein kinase also contributes to leucine deprivation-increased hepatic insulin sensitivity. Finally, we show that leucine deprivation improves insulin sensitivity under insulin-resistant conditions. This study describes mechanisms underlying increased hepatic insulin sensitivity under leucine deprivation. Furthermore, we demonstrate a novel function for GCN2 in the regulation of insulin sensitivity. These observations provide a rationale for short-term dietary restriction of leucine for the treatment of insulin resistance and associated metabolic diseases.
    Diabetes 02/2011; 60(3):746-56. DOI:10.2337/db10-1246 · 8.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Paclitaxel is a substrate of the efflux transporters such as P-glycoprotein, and is mainly metabolized by the liver. Schisandrol B (Sch B), one of the active components in Schisandra, has been reported to be able to inhibit the activity of P-gp and CYP3A. It might be possible that Sch B would alter the pharmacokinetic behavior of paclitaxel. Therefore, the purpose of this study was to investigate the effect of Sch B on the pharmacokinetics of paclitaxel administered orally and intravenously in rats. Paclitaxel were administered to rats orally (30 mg/kg) or intravenously (0.5 mg/kg) with or without the concomitant administration of Sch B (10 or 25 mg/kg). Oral pharmacokinetic parameters of paclitaxel were significantly altered when pretreated with Sch B. There were significant increases in AUC(0-24h) (from 297.7+/-110.3 to 838.9+/-302.1 h*ng/ml; p<0.05) and C(max) (from 51.7+/-20.1 to 136.4+/-35.5 ng/ml; p<0.05) in the presence of Sch B (25 mg/kg). The pharmacokinetic parameters for i.v. paclitaxel were not significantly affected by Sch B in contrast to that of oral administration. Since the presence of Sch B enhanced the systemic exposure of paclitaxel, their pharmacokinetic interaction should be taken into consideration. As the oral bioavailability of paclitaxel was increased about 3-fold in the presence of Sch B, the concomitant use of Sch B may provide a benefit in the oral delivery of paclitaxel.
    Biopharmaceutics & Drug Disposition 05/2010; 31(4):264-8. DOI:10.1002/bdd.705 · 2.18 Impact Factor
  • Source
    Chunxia Wang · Zhiying Huang · Ying Du · Ying Cheng · Shanghai Chen · Feifan Guo
    [Show abstract] [Hide abstract]
    ABSTRACT: Activating transcription factor 4 (ATF4) has been shown to play key roles in many physiological processes. There are no reports, however, demonstrating a direct link between ATF4 and lipid metabolism. We noticed that Atf4-deficient mice are lean, suggesting a possible role for ATF4 in regulating lipid metabolism. The goal of our current study is to investigate the involvement of ATF4 in lipid metabolism and elucidate the underlying mechanisms. Studies using Atf4-deficient mice revealed increased energy expenditure, as measured by oxygen consumption. These mice also showed increases in lipolysis, expression of uncoupling protein 2 (UCP2) and beta-oxidation genes and decreases in expression of lipogenic genes in white adipose tissue (WAT), suggesting increased utilization and decreased synthesis of fatty acids, respectively. Expression of UCP1, 2 and 3 was also increased in brown adipose tissue (BAT), suggesting increased thermogenesis. The effect of ATF4 deletion on expression of UCPs in BAT suggests that increased thermogenesis may underlie increased energy expenditure. Thus, our study identifies a possible new function for ATF4 in regulating lipid metabolism and thermogenesis.
    Cell Research 02/2010; 20(2):174-84. DOI:10.1038/cr.2010.4 · 11.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: White adipose tissue (WAT) and brown adipose tissue (BAT) play distinct roles in adaptation to changes in nutrient availability, with WAT serving as an energy store and BAT regulating thermogenesis. We previously showed that mice maintained on a leucine-deficient diet unexpectedly experienced a dramatic reduction in abdominal fat mass. The cellular mechanisms responsible for this loss, however, are unclear. The goal of current study is to investigate possible mechanisms. Male C57BL/6J mice were fed either control, leucine-deficient, or pair-fed diets for 7 days. Changes in metabolic parameters and expression of genes and proteins related to lipid metabolism were analyzed in WAT and BAT. We found that leucine deprivation for 7 days increases oxygen consumption, suggesting increased energy expenditure. We also observed increases in lipolysis and expression of beta-oxidation genes and decreases in expression of lipogenic genes and activity of fatty acid synthase in WAT, consistent with increased use and decreased synthesis of fatty acids, respectively. Furthermore, we observed that leucine deprivation increases expression of uncoupling protein (UCP)-1 in BAT, suggesting increased thermogenesis. We show for the first time that elimination of dietary leucine produces significant metabolic changes in WAT and BAT. The effect of leucine deprivation on UCP1 expression is a novel and unexpected observation and suggests that the observed increase in energy expenditure may reflect an increase in thermogenesis in BAT. Further investigation will be required to determine the relative contribution of UCP1 upregulation and thermogenesis in BAT to leucine deprivation-stimulated fat loss.
    Diabetes 10/2009; 59(1):17-25. DOI:10.2337/db09-0929 · 8.47 Impact Factor

Publication Stats

217 Citations
68.79 Total Impact Points

Institutions

  • 2010–2015
    • Sun Yat-Sen University
      • School of Pharmaceutical Science
      Shengcheng, Guangdong, China
  • 2010–2011
    • Shanghai Institutes for Biological Sciences
      Shanghai, Shanghai Shi, China
  • 2009–2011
    • Chinese Academy of Sciences
      • Key Laboratory of Nutrition and Metabolism
      Peping, Beijing, China