Are you Yuan Zhang?

Claim your profile

Publications (2)2.71 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective. To explore the applications of preoperative planning and virtual surgery including surgical windowing and elevating reduction and to determine the clinical effects of this technology on the treatment of Schatzker type III tibial plateau fractures. Methods. 32 patients with Schatzker type III tibial plateau fractures were randomised upon their admission to the hospital using a sealed envelope method. Fourteen were treated with preoperative virtual design and assisted operation (virtual group) and 18 with direct open reduction and internal fixation (control group). Results. All patients achieved primary incision healing. Compared with control group, virtual groups showed significant advantages in operative time, incision length, and blood loss (P < 0.001). The virtual surgery was consistent with the actual surgery. Conclusion. The virtual group was better than control group in the treatment of tibial plateau fractures of Schatzker type III, due to shorter operative time, smaller incision length, and lower blood loss. The reconstructed 3D fracture model could be used to preoperatively determine the surgical windowing and elevating reduction method and simulate the operation for Schatzker type III tibial plateau fractures.
    BioMed Research International 02/2015; 2015:231820. DOI:10.1155/2015/231820 · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In current study of femoral head necrosis and femoral neck fractures, more attentions has been paid to relationship between the femoral head trabecular bone within the spatial structure and its biomechanics. In this connection, PMMA (polymethyl methacrylate), special square iron, dental base acrylic resin liquid and powder were used to embed and fix human dry femur. Then, M618 Lie Axle Rectangle Desk Plane Grinding Machine was applied to grind the femur specimen, and then air blower clean, two-dimensional cross section image was obtained by using scanner. With Mimics software reconstruction, a three-dimensional model of spatial structure of trabecular bone was obtained, and the trabecular bone three-dimensional parameters were calculated. The authors obtained clear three-dimensional model of trabecular bone, reconstructed the real anatomic morphology of proximal femur. This is a good method to research into the interior structure of femur and to provide the foundation for the three-dimensional finite element analysis.
    Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi 02/2011; 28(1):71-5.