Yonghua Zhu

Stanford University, Stanford, CA, United States

Are you Yonghua Zhu?

Claim your profile

Publications (3)35.25 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: To confirm the relationship between plasma osteopontin (OPN) levels and treatment outcomes in head and neck squamous cell carcinoma (HNSCC) patients in an expanded study. One hundred forty patients with newly diagnosed HNSCC were enrolled onto this study, 54 previously reported and 86 new patients. Pretreatment plasma OPN levels were assessed in all patients by an enzyme-linked immunosorbent assay method. OPN levels were correlated to treatment outcomes in the new group of patients. Detailed analyses were also performed on the relationship between OPN and tumor control rate, event-free survival (EFS), and postrelapse survival for the entire group. Using a previously defined cut off point of 450 ng/mL, there was a significant correlation between OPN and freedom-from-relapse (P = .047), overall survival (P = .019), and EFS (P = .023) in the new, independent patient cohort (n = 86). Sequence of event analyses using the entire group (N = 140) revealed that OPN was an independent prognostic factor for initial tumor control, EFS in those who have achieved tumor control, and postrelapse survival. In this expanded study, we were able to replicate the prognostic significance of OPN using a predefined cut off point in an independent patient group and demonstrated that plasma OPN is an independent prognostic marker for HNSCC.
    Journal of Clinical Oncology 12/2006; 24(33):5291-7. · 18.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteopontin (OPN) is a secreted phosphoglycoprotein that has been linked to tumor progression and survival in several solid tumors, including head and neck cancers. Previous studies showed that OPN expression is induced by tumor hypoxia, and its plasma levels can serve as a surrogate marker for tumor hypoxia and treatment outcome in head and neck cancer patients. In this study, we investigate the transcriptional mechanism by which hypoxia enhances OPN expression. We found that OPN is induced in head and neck squamous cell carcinoma (HNSCC) cell lines and in NIH3T3 cells by hypoxia at both mRNA and protein levels in a time-dependent manner. Actinomycin D chase experiments showed that hypoxic induction of OPN was not due to increased mRNA stability. Deletion analyses of the mouse OPN promoter regions indicated that a ras-activated enhancer (RAE) located at -731 to -712 relative to the transcription start site was essential for hypoxia-enhanced OPN transcription. Using electrophoretic mobility shift assays with the RAE DNA sequence, we found that hypoxia induced sequence-specific DNA-binding complexes. Furthermore, hypoxia and ras exposure resulted in an additive induction of OPN protein and mRNA levels that appeared to be mediated by the RAE. Induction of OPN through the RAE element by hypoxia is mediated by an Akt-kinase signaled pathway as decreasing Akt levels with dominant negative constructs resulted in inhibition of OPN induction by hypoxia. Taken together, these results have identified a new hypoxia responsive transcriptional enhancer that is regulated by Akt signaling.
    Oncogene 10/2005; 24(43):6555-63. · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor hypoxia modifies the efficacy of conventional anticancer therapy and promotes malignant tumor progression. Human chorionic gonadotropin (hCG) is a glycoprotein secreted during pregnancy that has been used to monitor tumor burden in xenografts engineered to express this marker. We adapted this approach to use urinary beta-hCG as a secreted reporter protein for tumor hypoxia. We used a hypoxia-inducible promoter containing five tandem repeats of the hypoxia-response element (HRE) ligated upstream of the beta-hCG gene. This construct was stably integrated into two different cancer cell lines, FaDu, a human head and neck squamous cell carcinoma, and RKO, a human colorectal cancer cell line. In vitro studies showed that tumor cells stably transfected with this plasmid construct secrete beta-hCG in response to hypoxia or hypoxia-inducible factor 1alpha (HIF-1alpha) stabilizing agents. The hypoxia responsiveness of this construct can be blocked by treatment with agents that affect the HIF-1alpha pathways, including topotecan, 1-benzyl-3-(5'-hydroxymethyl-2'-furyl)indazole (YC-1), and flavopiridol. Immunofluorescent analysis of tumor sections and quantitative assessment with flow cytometry indicate colocalization between beta-hCG and 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetamide (EF5) and beta-hCG and pimonidazole, two extrinsic markers for tumor hypoxia. Secretion of beta-hCG from xenografts that contain these stable constructs is directly responsive to changes in tumor oxygenation, including exposure of the animals to 10% O2 and tumor bed irradiation. Similarly, urinary beta-hCG levels decline after treatment with flavopiridol, an inhibitor of HIF-1 transactivation. This effect was observed only in tumor cells expressing a HRE-regulated reporter gene and not in tumor cells expressing a cytomegalovirus-regulated reporter gene. The 5HRE beta-hCG reporter system described here enables serial, noninvasive monitoring of tumor hypoxia in a mouse model by measuring a urinary reporter protein.
    Cancer Research 08/2005; 65(14):6151-8. · 8.65 Impact Factor

Publication Stats

64 Citations
35.25 Total Impact Points

Institutions

  • 2005–2006
    • Stanford University
      • Department of Radiation Oncology
      Stanford, CA, United States