Yan Wang

Second Military Medical University, Shanghai, Shanghai, Shanghai Shi, China

Are you Yan Wang?

Claim your profile

Publications (14)47.84 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stomatin is an important lipid raft-associated protein which interacts with membrane proteins and plays a role in the membrane organization. However, it is unknown whether it is involved in the response to hypoxia and glucocorticoid (GC) in alveolar epithelial cells (AEC). In this study we found that hypoxia and dexamethasone (dex), a synthetic GC not only up-regulated the expression of stomatin alone, but also imposed additive effect on the expression of stomatin in A549 cells, primary AEC and lung of rats. Then we investigated whether hypoxia and dex transcriptionally up-regulated the expression of stomatin by reporter gene assay, and found that dex, but not hypoxia could increase the activity of a stomatin promoter-driven reporter gene. Further deletion and mutational studies demonstrated that a GC response element (GRE) within the promoter region mainly contributed to the induction of stomatin by dex. Moreover, we found that hypoxia exposure did not affect membrane-associated actin, but decreased actin in cytoplasm in A549 cells. Inhibiting stomatin expression by stomatin siRNA significantly decreased dense of peripheral actin ring in hypoxia or dex treated A549 cells. Taken all together, these data indicated that dex and/or hypoxia significantly up-regulated the expression of stomatin in vivo and in vitro, which could stabilize membrane-associated actin in AEC. We suppose that the up-regulation of stomatin by hypoxia and dex may enhance the barrier function of alveolar epithelia and mediate the adaptive role of GC to hypoxia.
    Journal of Cellular and Molecular Medicine 05/2013; · 4.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Pulmonary surfactant (PS) administration has been attempted for the treatment of adults with acute lung injury (ALI)/adult respiratory distress syndrome. Aerosolized surfactants inhaled by spontaneous breathing may be an effective method of surfactant-based therapies. Using a noninvasive apparatus, we evaluated the therapeutic effects of aerosolized PS alone or together with dexamethasone (Dex) on a rat model of ALI. METHODS: Severe ALI was induced by intravenous injection of 20% oleic acid (0.2 mL/kg) into adult Sprague-Dawley rats. Animals were divided into eight groups: sham (n = 10); model (injury only, n = 10); normal saline (NS) aerosol driven by compressed air (air-NS, n = 13); PS aerosol driven by compressed air (air-PS, n = 13); NS aerosol driven by O2 (O2-NS, n = 13); PS aerosol driven by O2 (O2-PS, n = 13); Dex aerosol driven by O2 (O2-Dex, n = 13); and PS and Dex aerosol driven by O2 (O2-PS-Dex, n = 13). Blood gases, breathing rate, lung index, total protein, and proinflammatory cytokines (tumor necrosis factor-α, interleukin 1β, interleukin 6) in the bronchoalveolar lavage fluid (BALF), and lung histology were examined. RESULTS: Animals treated with air-PS for 20 minutes had significantly improved lung function, reduced pulmonary edema, decreased concentration of total protein and proinflammatory cytokines in BALF, ameliorated lung injury, and improved animal survival. In the O2-PS group, the breathing rates and lung injury scores were significantly lower than that of the air-PS group. In the O2-PS-Dex group, lung edema, total protein, and inflammatory cytokines in BALF were significantly reduced in comparison with the O2-PS group. CONCLUSION: Inhalation of aerosolized PS generated by the noninvasive apparatus could significantly reduce lung injury, while using oxygen line available in the clinical wards to generate PS aerosol is more convenient and adds further benefits. This method can also be used to deliver Dex and other therapeutic agents to ameliorate lung injury.
    The journal of trauma and acute care surgery. 09/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Small GTPase RhoB has been well documented in regulating cell adhesion, motility, proliferation, and survival, but to date, there is little information about the relationship between RhoB and inflammation. In this study, the mRNA and protein levels of RhoB were induced by lipopolysaccharide (LPS) in RAW264.7 cells determined by real-time PCR and Western blot. The upregulation of RhoB by LPS was also observed in mouse peritoneal macrophages and in mouse lung, liver, and kidney. RhoB overexpression by transfecting with wild RhoB plasmid increased the secretion of tumor necrosis factor alpha (TNF-α) and nitric oxide (NO) in RAW264.7 cells, while RhoB knockdown by RNA interference decreased the secretion of TNF-α and NO in RAW264.7 cells. TNF-α and NO synthase are the target genes of nuclear factor-kappaB (NF-κB), and overexpression of RhoB increased, whereas inhibition of RhoB decreased the basal and LPS-activated transcriptional activity of NF-κB in the cells. These results demonstrated that LPS induced RhoB expression in mouse in vivo and in vitro and in RAW264.7 cells, and the role of RhoB on LPS-induced secretion of TNF-α and NO was at least partly mediated via NF-κB. These results indicated that RhoB was involved in LPS-induced inflammation in mouse in vivo and in vitro.
    Journal of physiology and biochemistry 08/2012; · 1.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia and inflammation often develop concurrently in numerous diseases, and the influence of hypoxia on natural evolution of inflammatory responses is widely accepted. Glucocorticoid-induced leucine zipper (GILZ) is thought to be an important mediator of anti-inflammatory and immune-suppressive actions of glucocorticoid (GC). However, whether GILZ is involved in hypoxic response is still unclear. In this study, we investigated the effects of hypoxic exposure and/or the administration of dexamethasone (Dex), a synthetic GC on GILZ expression both in vitro and in vivo, and further explored the relationship between GILZ and proinflammatory cytokines IL-1β, IL-6, and TNF-α under normoxic and hypoxic conditions. We found that hypoxia not only remarkably upregulated the expression of GILZ, but also significantly enhanced Dex-induced expression of GILZ in macrophages and the spleen of rats. ERK activity is found involved in the upregulation of GILZ induced by hypoxia. Inhibiting the expression of GILZ in RAW264.7 cells using specific GILZ small interfering RNA led to a significant increase in mRNA production and protein secretion of IL-1β and IL-6 in hypoxia and abrogated the inhibitory effect of Dex on expression of IL-1β and IL-6 in hypoxia. We also found that adrenal hormones played pivotal roles in upregulation of GILZ expression in vivo. Altogether, data presented in this study suggest that GILZ has an important role not only in adjusting adaptive responses to hypoxia by negatively regulating the activation of macrophages and the expression of proinflammatory cytokines, but also in mediating the anti-inflammatory action of GC under hypoxic conditions.
    The Journal of Immunology 11/2011; 188(1):222-9. · 5.52 Impact Factor
  • Source
    Genome Biology 09/2011; 12(1). · 10.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stomatin is an important membrane raft protein which can combine skeleton protein, some ion channel, and transporter to regulate their functions. However, until now no data on its expression and function in CNS are available. In this study, we examined distribution of stomatin in CNS of rat, and investigated the effects of hypoxia exposure and glucocorticoid on stomatin expression in cerebral cortex of rat. Immunofluorescence staining revealed a broad expression of stomatin protein in many areas of adult rat brain and spinal cord, including the ventral horn of spinal cord, causal magnocellular nucleus of hypothalamus, the V layer of the cerebral cortex, solitary nucleus, 10 and 12 nuclei, and so on. Hypoxia or ischemic hypoxia significantly up-regulated stomatin expression in cerebral cortex, and the up-regulation was independent on adrenocortical steroids since it also occurred in adrenalectomized (ADX) rats. Moreover, treatment of ADX or sham-operated rats with dexamethasone, a synthetic glucocorticoid alone could significantly stimulate expression of stomatin in lung and heart, but not in cerebral cortex. However, dexamethasone could enhance the hypoxia-stimulated expression of stomatin in cerebral cortex of ADX rats. These findings suggested that stomatin might be involved in various physiological functions and cellular events of neurons in CNS under physiological conditions and play a potential protective role under hypoxic conditions.
    Journal of Neurochemistry 02/2011; 116(3):374-84. · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although more than 40 beta-defensins have been identified in rat epididymis, little is known about their regulation or their relation to male infertility caused by inflammation. Using a rat model of epididymitis induced by lipopolysaccharide (LPS), we examined expression of SPAG11E (also known as Bin1b), a caput epididymis-specific beta-defensin in rat. Unlike the expression of other beta-defensins in various epithelial cells with upregulated expression after LPS stimulation, expression of SPAG11E was significantly decreased by LPS at the mRNA and protein levels. LPS treatment also significantly decreased both sperm binding to SPAG11E and sperm motility, and supplementation of the spermatozoa with recombinant SPAG11E in vitro remarkably increased both SPAG11E binding and motility of sperm. To clarify whether decreased expression is a common pattern of epididymal beta-defensins after LPS stimulation, we examined the expression of another 12 epididymal beta-defensins expressed in the caput epididymis. For nine of these beta-defensins, expression was decreased, but for the other three, expression remained unaffected. These findings demonstrate that LPS-induced epididymitis can decrease the expression of epididymal beta-defensins and that disruption of SPAG11E expression is involved in the impairment of sperm motility.
    Biology of Reproduction 12/2010; 83(6):1064-70. · 4.03 Impact Factor
  • Academic Journal of Second Military Medical University 01/2010; 30(1):7-11.
  • Academic Journal of Second Military Medical University 01/2010; 29(11):1221-1224.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glucocorticoids (GCs) are widely used as co-medication in the therapy of solid malignant tumors to relieve some of the side effects of chemotherapeutic drugs. However, recent studies have shown that GCs could render cancer cells more resistant to cytotoxic drug-induced apoptosis, but the mechanism is largely unknown. In the present study, we found that the treatment of human ovarian cancer cell lines HO-8910 and SKOV3 with synthetic GCs dexamethasone (Dex) significantly increased their adhesion to extracellular matrix (ECM) and their resistance to apoptosis induced by cytotoxic drugs cisplatin and paclitaxel. Dex also increased the protein levels of adhesion molecules integrins beta1, alpha 4, and alpha 5 in HO-8910 cells. The neutralizing antibody against integrin beta1 prevented Dex-induced adhesion and significantly abrogated the protective effect of Dex toward cytotoxic agents. We further found that transforming growth factor-beta1 (TGF-beta1) alone not only increased cell adhesion and cell survival of HO-8910 cells in the presence of cisplatin, but also had synergistic pro-adhesion and pro-survival effects with Dex. Moreover, TGF-beta1-neutralizing antibody that could block TGF-beta1-induced cell adhesion and apoptosis resistance markedly abrogated the synergistic pro-adhesion and pro-survival effects of Dex and TGF-beta1. Finally, we further demonstrated that Dex could up-regulate the expression of TGF-beta receptor type II and enhance the responsiveness of cells to TGF-beta1. In conclusion, our results indicate that increased adhesion to ECM through the enhancement of integrin beta1 signaling and TGF-beta1 signaling plays an important role in chemoresistance induced by GCs in ovarian cancer cells.
    Endocrine Related Cancer 09/2009; 17(1):39-50. · 5.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although glucocorticoid (GC) has been reported to inhibit macrophage killing activity and cytokine production in response to proinflammatory stimuli, the effect of GC on macrophage proliferation is controversial. In our previous study, we found that inhibition of glucocorticoid receptor (GR) expression in murine macrophage cell line RAW264.7 cells (RAW-GR(-) cells) by RNAi significantly promoted cell proliferation. In the present study, we provide the evidence that the expression of Rhob, a member of Rho GTPases with anti-cancer character, remarkably decreased in RAW-GR(-) and RAW264.7 cells transiently transfected with GR-RNAi vector. Overexpression or constitutive activation of Rhob in RAW-GR(-) and RAW264.7 cells by transfection with wild-type Rhob expression vector (Rhob-wt) or constitutively activated Rhob plasmid (Rhob-V14) resulted in decreased proliferation of the two cell lines. Oppositely, the proliferation of RAW264.7 cells was significantly increased when the expression of Rhob by RNA interference technique or the activity of Rhob by transfection with dominant negative Rhob mutant that is defective in nucleotide binding (Rhob-N19) was inhibited. In addition, enhanced activity of Akt, but not MAPK3/1 or MAPK14, was found in RAW-GR(-) cells. Blocking the pathway of phosphatidylinositol 3-kinase (PI3K)/Akt with the specific inhibitor LY294002 decreased the proliferation and elevated RHOB protein level, indicating that PI3K/Akt signal plays its role of proliferation modulation upstream of RHOB protein. In conclusion, these results demonstrate that Rhob plays an important role in the antiproliferative effect of GR on RAW264.7 cells by GR-->Akt-->Rhob signaling and Rhob negatively regulates the proliferation of RAW264.7 cells.
    Journal of Endocrinology 11/2008; 200(1):35-43. · 4.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glucocorticoid (GC) effectively suppresses immune and inflammatory responses and inhibits the growth of several types of cells, but the role of GC and its receptor on macrophage proliferation is unclear. In our previous work, we found RAW-GR(-) cells (murine macrophage RAW264.7 cells stably transfected with GR-siRNA expression vector by RNA interference) grew faster by about twofold. In this study, we further explored the role and mechanisms of GC/GR on the proliferation of macrophage. We found that the growth of RAW264.7 cells was inhibited by dexamethasone (Dex) in a concentration-dependent manner. The mRNA and protein levels of signal regulatory protein alpha1 (SIRPA) were induced by GC/GR in RAW264.7 cells and SIRPA expression was decreased remarkably in RAW-GR(-) cells. Overexpression of SIRPA negatively regulated the proliferation of RAW-GR(-) cells, and inhibition of SIRPA expression by a small from RNA interference attenuated Dex-induced proliferation inhibition in RAW264.7 cells. The proliferation inhibition of GC/GR was also found in mouse peritoneal macrophage, which was associated with the increase in SIRPA induced by GC/GR as well. In addition, elevation of the expression of CDK2, cyclinD1, and cyclinB1, but not phosphorylated ERK1/2 and p38, was found in RAW-GR(-) cells. In conclusion, we provided the novel evidences that GC/GR inhibited the growth of RAW264.7 cells and mouse peritoneal macrophage, and the antiproliferative effect of GC/GR on these cells was at least in part a result from GC/GR-induced SIRPA expression. Up-regulation of CDK2, cyclinD1, and cyclinB1 was also related to the increased proliferation of RAW-GR(-) cells.
    Journal of Molecular Endocrinology 09/2008; 41(5):393-403. · 3.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have shown that dexamethasone (Dex) induces the expression of TGF-beta1 in androgen-independent prostate cancer both in vitro and in vivo. However, it is not clear whether Dex has a direct effect on the expression of TGF-beta receptors. In this study, using the androgen-independent human prostate cancer cell line, PC-3 cells, we demonstrated that Dex increased the expression of TGF-beta receptor type II (TbetaRII), but not TGF-beta receptor type I (TbetaRI) in a time- and dose-dependent manner. The up-regulation of TbetaRII expression by Dex was mediated by glucocorticoid receptor and occurred at the transcriptional level. Dex also enhanced TGF-beta1 signaling and increased the expression of cyclin-dependent kinase inhibitors p15(INK4B) (p15) and p27(KIP1) (p27), which are the target genes of TGF-beta1 and have been identified as inducers of cell cycle arrest at the G1 checkpoint. The antiproliferative effect of Dex was partially blocked by anti-TbetaRII antibody, indicating that elevated TbetaRII and TGF-beta1 signaling were involved in the antiproliferative effect of Dex. Because the TGF-beta1 pathway could not fully explain the antiproliferative effect of Dex, we further examined the effects of Dex on the transcriptional activity of nuclear factor-kappaB (NF-kappaB) and the expression of IL-6 and found that Dex suppressed the transcriptional activity of NF-kappaB and IL-6 mRNA expression in PC-3 cells. These results demonstrated that glucocorticoid inhibited the proliferation of PC-3 cells not only through enhancing growth-inhibitory TGF-beta1 signaling, but also through suppressing transcriptional activities of NF-kappaB.
    Endocrinology 12/2006; 147(11):5259-67. · 4.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To observe the effect of dexamethasone (Dex) on the proliferation of human ovarian cancer cells of the line HO-8910, and explore the role of RhoB signaling pathway in this process. Human ovarian cancer cells of the line HO-8910he were cultured in culture fluids with or without different concentrations of Dex. The cell growth levels in anchor-dependent and anchor-independent manner were detected by MTT and soft agar assay. Another HO-8910 cells were inoculated in gel with different concentrations of Dex. HO-8910 was transfected with the eukaryotic expression plasmid RhoB-wt, blank plasmids pcDNA3 and RhoB-RNAi, and then the mRNA expression of RhoB, a small GTPase gene, was examined by semi-quantitative RT-PCR. and the protein expressions of RhoB, p-Akt, and p21(cip1/waf1) and p27, both cyclin kinase inhibitors (CDIs), were detected by Western blotting. HO-8910 cells were co-transfected with the reporter gene p21-luc containing p21 promoter and marker reporter gene pRL-tk-luc, then treated with Dex for 24 h. Western blotting was used to detect the transcription of p21(cip1/waf1) gene. The RhoB mRNA expression was significantly increased 2 hours after the treatment of 100 nM Dex, and peaked 4 hours later as high as 2.5 times that of the control group. Western blotting showed that the RhoB protein expression increased along the increase of the Des concentration. The protein expression of RhoB in the HO-8910 cells transfected with RhoB-wt was 2.02 times that in the HO-8910 cells transfected with blank plasmid, and the protein expression of RhoB in the HO-8910 cells transfected with RhoB-RNAi was 36% of that of the blank plasmid group (P < 0.01). The HO-8910 cell proliferation of the RhoB-RNA1 group was not significantly different from that of the control group, however, the proliferation of the HO-8910 cell treated by 100 nM Dex for 6 days was significantly inhibited with an inhibition rate of 13% (P < 0.01). Western blotting showed that Dex down-regulated the p-Akt protein expression. Dex time and dose-dependently up-regulated the protein expression of p21(cip1/waf1) and p27. The HO-8910 cells co-transfected with p21-luc and pRL-tk-luc and then treated with Dex for 24 h showed an higher p21-luc activity, 1.72 times that of the control group (P < 0.05). The mechanism of inhibiting the proliferation by Dex in ovarian cancer cells may involve the depression of PI3K/p-Akt, and then up-regulation of RhoB and its downstream signal molecules p21(cip1/waf1) and p27 proteins.
    Zhonghua yi xue za zhi 06/2006; 86(20):1400-4.