Xiaodong Cheng

Emory University, Atlanta, Georgia, United States

Are you Xiaodong Cheng?

Claim your profile

Publications (114)911.85 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: doi: 10.1021/cs501702k
    ACS Catalysis 12/2014; · 5.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X syndrome, a common cause of intellectual disability and autism, is due to mutational silencing of the FMR1 gene leading to the absence of its gene product, FMRP. FMRP is a selective RNA-binding protein owing to two central KH domains and a C-terminal RGG box. However, several properties of the FMRP amino terminus are unresolved. It has been documented for over a decade that the amino terminus has the ability to bind RNA despite having no recognizable functional motifs. Moreover, the amino terminus has recently been shown to bind chromatin and influence the DNA damage response as well as function in the presynaptic space, modulating action potential duration. We report here the amino terminal crystal structures of wild-type FMRP, and a mutant (R138Q) that disrupts the amino terminus function, containing an integral tandem Agenet and discover a novel KH motif. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Human Molecular Genetics 11/2014; · 7.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MspJI belongs to a family of restriction enzymes that cleave DNA containing 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC). MspJI is specific for the sequence 5(h)mC-N-N-G or A and cleaves with some variability 9/13 nucleotides downstream. Earlier, we reported the crystal structure of MspJI without DNA and proposed how it might recognize this sequence and catalyze cleavage. Here we report its co-crystal structure with a 27-base pair oligonucleotide containing 5mC. This structure confirms that MspJI acts as a homotetramer and that the modified cytosine is flipped from the DNA helix into an SRA-like-binding pocket. We expected the structure to reveal two DNA molecules bound specifically to the tetramer and engaged with the enzyme's two DNA-cleavage sites. A coincidence of crystal packing precluded this organization, however. We found that each DNA molecule interacted with two adjacent tetramers, binding one specifically and the other non-specifically. The latter interaction, which prevented cleavage-site engagement, also involved base flipping and might represent the sequence-interrogation phase that precedes specific recognition. MspJI is unusual in that DNA molecules are recognized and cleaved by different subunits. Such interchange of function might explain how other complex multimeric restriction enzymes act.
    Nucleic Acids Research 09/2014; · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In mammalian DNA, cytosine occurs in several chemical forms, including unmodified cytosine (C), 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5mC is a major epigenetic signal that acts to regulate gene expression. 5hmC, 5fC, and 5caC are oxidized derivatives that might also act as distinct epigenetic signals. We investigated the response of the zinc finger DNA-binding domains of transcription factors early growth response protein 1 (Egr1) and Wilms tumor protein 1 (WT1) to different forms of modified cytosine within their recognition sequence, 5'-GCG(T/G)GGGCG-3'. Both displayed high affinity for the sequence when C or 5mC was present and much reduced affinity when 5hmC or 5fC was present, indicating that they differentiate primarily oxidized C from unoxidized C, rather than methylated C from unmethylated C. 5caC affected the two proteins differently, abolishing binding by Egr1 but not by WT1. We ascribe this difference to electrostatic interactions in the binding sites. In Egr1, a negatively charged glutamate conflicts with the negatively charged carboxylate of 5caC, whereas the corresponding glutamine of WT1 interacts with this group favorably. Our analyses shows that zinc finger proteins (and their splice variants) can respond in modulated ways to alternative modifications within their binding sequence.
    Genes & development. 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arabidopsis thaliana Repressor of silencing 1 (ROS1) is a multi-domain bifunctional DNA glycosylase/lyase, which excises 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) as well as thymine and 5-hydroxymethyluracil (i.e., the deamination products of 5mC and 5hmC) when paired with a guanine, leaving an apyrimidinic (AP) site that is subsequently incised by the lyase activity. ROS1 is slow in base excision and fast in AP lyase activity, indicating that the recognition of pyrimidine modifications might be a rate-limiting step. In the C-terminal half, the enzyme harbors a Helix-hairpin-Helix DNA glycosylase domain followed by a unique C-terminal domain. We show that the isolated glycosylase domain is inactive for base excision, but retains partial AP lyase activity. Addition of the C-terminal domain restores the base excision activity and increased the AP lyase activity as well. Furthermore, the two domains remain tightly associated and can be co-purified by chromatography. We suggest that the C-terminal domain of ROS1 is indispensable for the 5mC DNA glycosylase activity of ROS1.
    Journal of molecular biology. 09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian genomes are replete with retrotransposable elements, including endogenous retroviruses. DNA methyltransferase 3-like (DNMT3L) is an epigenetic regulator expressed in prospermatogonia, growing oocytes, and embryonic stem (ES) cells. Here, we demonstrate that DNMT3L enhances the interaction of repressive epigenetic modifiers, including histone deacetylase 1 (HDAC1), SET domain, bifurcated 1 (SETDB1), DNA methyltransfearse 3A (DNMT3A), and tripartite motif-containing protein 28 (TRIM28; also known as TIF1β and KAP1) in ES cells and orchestrates retroviral-silencing activity with TRIM28 through mechanisms including, but not limited to, de novo DNA methylation. Ectopic expression of DNMT3L in somatic cells causes methylation-independent retroviral silencing activity by recruitment of the TRIM28/HDAC1/SETDB1/DNMT3A/DNMT3L complex to newly integrated Moloney Murine Leukemia Virus (Mo-MuLV) proviral DNA. Concurrent with this recruitment, we also observed the accumulation of histone H3 lysine 9 trimethylation (H3K9me3) and heterochromatin protein 1 gamma (HP1γ), as well as reduced H3K9 and H3K27 acetylation at Mo-MuLV proviral sequences. Ectopic expression of DNMT3L in late passage mouse embryonic fibroblasts (MEFs) recruited cytoplasmically localized HDAC1 to the nucleus. The formation of this epigenetic modifying complex requires interaction of DNMT3L with DNMT3A as well as with histone H3. In fetal testes at embryonic day 17.5, endogenous DNMT3L also enhanced the binding among TRIM28, DNMT3A, SETDB1, and HDAC1. We propose that DNMT3L may be involved in initiating a cascade of repressive epigenetic modifications by assisting in the preparation of a chromatin context that further attracts DNMT3A-DNMT3L binding and installs longer-term DNA methylation marks at newly-integrated retroviruses.
    Journal of virology. 07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: AbaSI, a member of the PvuRts1I-family of modification-dependent restriction endonucleases, cleaves deoxyribonucleic acid (DNA) containing 5-hydroxymethylctosine (5hmC) and glucosylated 5hmC (g5hmC), but not DNA containing unmodified cytosine. AbaSI has been used as a tool for mapping the genomic locations of 5hmC, an important epigenetic modification in the DNA of higher organisms. Here we report the crystal structures of AbaSI in the presence and absence of DNA. These structures provide considerable, although incomplete, insight into how this enzyme acts. AbaSI appears to be mainly a homodimer in solution, but interacts with DNA in our structures as a homotetramer. Each AbaSI subunit comprises an N-terminal, Vsr-like, cleavage domain containing a single catalytic site, and a C-terminal, SRA-like, 5hmC-binding domain. Two N-terminal helices mediate most of the homodimer interface. Dimerization brings together the two catalytic sites required for double-strand cleavage, and separates the 5hmC binding-domains by ∼70 Å, consistent with the known activity of AbaSI which cleaves DNA optimally between symmetrically modified cytosines ∼22 bp apart. The eukaryotic SET and RING-associated (SRA) domains bind to DNA containing 5-methylcytosine (5mC) in the hemi-methylated CpG sequence. They make contacts in both the major and minor DNA grooves, and flip the modified cytosine out of the helix into a conserved binding pocket. In contrast, the SRA-like domain of AbaSI, which has no sequence specificity, contacts only the minor DNA groove, and in our current structures the 5hmC remains intra-helical. A conserved, binding pocket is nevertheless present in this domain, suitable for accommodating 5hmC and g5hmC. We consider it likely, therefore, that base-flipping is part of the recognition and cleavage mechanism of AbaSI, but that our structures represent an earlier, pre-flipped stage, prior to actual recognition.
    Nucleic Acids Research 06/2014; · 8.81 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcription factor Krüppel-like factor 4 (Klf4), one of the factors directing cellular reprogramming, recognizes the CpG dinucleotide (whether methylated or unmodified) within a specific G/C-rich sequence. The binding affinity of the mouse Klf4 DNA-binding domain for methylated DNA is only slightly stronger than that for an unmodified oligonucleotide. The structure of the C-terminal three Krüppel-like zinc fingers (ZnFs) of mouse Klf4, in complex with fully methylated DNA, was determined at 1.85 Å resolution. An arginine and a glutamate interact with the methyl group. By comparison with two other recently characterized structures of ZnF protein complexes with methylated DNA, we propose a common principle of recognition of methylated CpG by C2H2 ZnF proteins, which involves a spatially conserved Arg-Glu pair.
    Nucleic Acids Research 02/2014; · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X syndrome is a common inherited form of intellectual disability and autism spectrum disorder. Most patients exhibit a massive CGG-repeat expansion mutation in the FMR1 gene that silences the locus. In over two decades since the discovery of FMR1, only a single missense mutation (p.(Ile304Asn)) has been reported as causing fragile X syndrome. Here we describe a 16-year-old male presenting with fragile X syndrome but without the repeat expansion mutation. Rather, we find a missense mutation, c.797G>A, that replaces glycine 266 with glutamic acid (p.(Gly266Glu)). The Gly266Glu FMR protein abolished many functional properties of the protein. This patient highlights the diagnostic utility of FMR1 sequencing.European Journal of Human Genetics advance online publication, 22 January 2014; doi:10.1038/ejhg.2013.311.
    European journal of human genetics: EJHG 01/2014; · 3.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA methyltransferases (DNMTs) are important enzymes involved in epigenetic control of gene expression and represent valuable targets in cancer chemotherapy. A number of nucleoside DNMT inhibitors (DNMTi) have been studied in cancer including cancer stem cells, and two of them (azacytidine and decitabine) have been approved for treatment of myelodysplastic syndromes. However, only few non-nucleoside DNMTi have been identified so far, and much less validated in cancer. Through a process of hit-to-lead optimization, we report here the discovery of compound 5 as potent non-nucleoside DNMTi, and selective towards other AdoMet-dependent protein methyltransferases. Compound 5 was potent at single-digit µM against a panel of cancer cells, and less toxic in peripheral blood mononuclear cells. In mouse medulloblastoma stem cells 5 inhibited cell growth while the related compound 2 showed high cell differentiation. To the best of our knowledge, 2 and 5 are the first non-nucleoside DNMTi tested in a cancer stem cell line.
    Journal of Medicinal Chemistry 01/2014; · 5.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The modification-dependent restriction endonuclease AspBHI recognizes 5-methylcytosine (5mC) in the double-strand DNA sequence context of (C/T)(C/G)(5mC)N(C/G) (N = any nucleotide) and cleaves the two strands a fixed distance (N12/N16) 3' to the modified cytosine. We determined the crystal structure of the homo-tetrameric AspBHI. Each subunit of the protein comprises two domains: an N-terminal DNA-recognition domain and a C-terminal DNA cleavage domain. The N-terminal domain is structurally similar to the eukaryotic SET and RING-associated (SRA) domain, which is known to bind to a hemi-methylated CpG dinucleotide. The C-terminal domain is structurally similar to classic Type II restriction enzymes and contains the endonuclease catalytic-site motif of DX20EAK. To understand how specific amino acids affect AspBHI recognition preference, we generated a homology model of the AspBHI-DNA complex, and probed the importance of individual amino acids by mutagenesis. Ser41 and Arg42 are predicted to be located in the DNA minor groove 5' to the modified cytosine. Substitution of Ser41 with alanine (S41A) and cysteine (S41C) resulted in mutants with altered cleavage activity. All 19 Arg42 variants resulted in loss of endonuclease activity.
    Scientific Reports 01/2014; 4:4246. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemical manipulations performed on the histone H3 lysine 9 methyltransferases (G9a/GLP) inhibitor BIX-01294 afforded novel desmethoxyquinazolines able to inhibit the DNA methyltransferase DNMT3A at low micromolar levels without any significant inhibition of DNMT1 and G9a. In KG-1 cells such compounds, when tested at sub-toxic doses, induced the luciferase re-expression in a stable construct controlled by a cytomegalovirus (CMV) promoter silenced by methylation (CMV-luc assay). Finally, in human lymphoma U-937 and RAJI cells, the N-(1-benzylpiperidin-4-yl)-2-(4-phenylpiperazin-1-yl)quinazolin-4-amine induced the highest proliferation arrest and cell death induction starting from 10 µM, in agreement with its DNMT3A inhibitory potency.
    PLoS ONE 01/2014; 9(5):e96941. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytosine residues in mammalian DNA occur in five forms: cytosine (C), 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). The ten-eleven translocation (Tet) dioxygenases convert 5mC to 5hmC, 5fC and 5caC in three consecutive, Fe(ii)- and α-ketoglutarate-dependent oxidation reactions. The Tet family of dioxygenases is widely distributed across the tree of life, including in the heterolobosean amoeboflagellate Naegleria gruberi. The genome of Naegleria encodes homologues of mammalian DNA methyltransferase and Tet proteins. Here we study biochemically and structurally one of the Naegleria Tet-like proteins (NgTet1), which shares significant sequence conservation (approximately 14% identity or 39% similarity) with mammalian Tet1. Like mammalian Tet proteins, NgTet1 acts on 5mC and generates 5hmC, 5fC and 5caC. The crystal structure of NgTet1 in complex with DNA containing a 5mCpG site revealed that NgTet1 uses a base-flipping mechanism to access 5mC. The DNA is contacted from the minor groove and bent towards the major groove. The flipped 5mC is positioned in the active-site pocket with planar stacking contacts, Watson-Crick polar hydrogen bonds and van der Waals interactions specific for 5mC. The sequence conservation between NgTet1 and mammalian Tet1, including residues involved in structural integrity and functional significance, suggests structural conservation across phyla.
    Nature 12/2013; · 38.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Zfp57 gene encodes a KRAB (Krüppel-associated box) domain-containing C2H2 zinc finger (ZnF) transcription factor that is expressed in early development. Zfp57 protein recognizes methylated CpG dinucleotide within GCGGCA elements at multiple imprinting control regions. In the previously solved structure of mouse Zfp57 DNA binding domain in complex with DNA containing 5-methylcytosine (5mC), the side chains of Arg178 and Glu182 contact the methyl group via hydrophobic and van der Waals interactions. We examined the role of Glu182 in recognition of 5mC by mutagenesis. The majority of mutants examined lose selectivity of methylated (5mC) over unmodified (C) and oxidative derivatives, 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine (5caC), suggesting that the side chain of Glu182 (the size and the charge) is dispensable for methyl group recognition but negatively impacts the binding of unmodified cytosine as well as oxidized derivatives of 5mC to achieve the 5mC selectivity. Substitution of Glu182 with its corresponding amide (E182Q) had no effect on methylated DNA binding but gained significant binding affinity to 5caC DNA, resulting in a comparable binding affinity for 5caC DNA to that of wild-type protein for 5mC. We show structurally that the uncharged amide group of E182Q interacts favorably with the carboxylate group of 5caC. Furthermore, introducing a positively charged arginine at the residue 182 resulted in a mutant (E182R) having higher selectivity for the negatively charged 5caC.
    Biochemistry 11/2013; · 3.38 Impact Factor
  • Xiaodong Cheng, Robert M Blumenthal
    Trends in Biochemical Sciences 09/2013; 38(9):423. · 13.08 Impact Factor
  • Hideharu Hashimoto, Xing Zhang, Xiaodong Cheng
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian thymine DNA glycosylase (TDG) excises 5-carboxylcytosine (5caC) when paired with a guanine in a CpG sequence, in addition to mismatched bases. Here we present a complex structure of the human TDG catalytic mutant, asparagine 140 to alanine (N140A), with a 28-base pair DNA containing a G:5caC pair at pH 4.6. TDG interacts with the carboxylate moiety of target nucleotide 5caC using the side chain of asparagine 230 (N230), instead of asparagine 157 (N157) as previously reported. Mutation of either N157 or N230 residues to aspartate has minimal effect on G:5caC activity while significantly reducing activity on G:U substrate. Combination of both the asparagine-to-aspartate mutations (N157D/N230D) resulted in complete loss of activity on G:5caC while retaining measurable activity on G:U, implying that 5caC can adopt alternative conformations (either N157-interacting or N230-interacting) in the TDG active site to interact with either of the two asparagine side chain for 5caC excision.
    DNA repair 05/2013; · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Much is known about vertebrate DNA methylation, however it is not known how methylated CpG within particular sequences is recognized. Two recent structures of C2H2 zinc finger (ZnF) proteins in complex with methylated DNA reveal a common recognition mode for 5-methylcytosine (5mC) that involves a 5mC-Arg-G triad. In the two ZnF proteins, an arginine that precedes the first Zn-binding histidine (RH motif) can interact with a 5mCpG or TpG dinucleotide. Among a family of >300 human Krüppel-associated box (KRAB) domain containing ZnF proteins examined, two-thirds contained at least one ZnF that included an RH motif. We propose that the RH-ZnF motifs provide specificity for 5mCpG, whereas the neighboring Zn fingers recognize the surrounding DNA sequence context.
    Trends in Biochemical Sciences 01/2013; · 13.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the use of a unique DNA-modification-dependent restriction endonuclease AbaSI coupled with sequencing (Aba-seq) to map high-resolution hydroxymethylome of mouse E14 embryonic stem cells. The specificity of AbaSI enables sensitive detection of 5-hydroxymethylcytosine (5hmC) at low-occupancy regions. Bioinformatic analysis suggests 5hmCs in genic regions closely follow the 5mC distribution. 5hmC is generally depleted in CpG islands and only enriched in a small set of repetitive elements. A regularly spaced and oscillating 5hmC pattern was observed at the binding sites of CTCF. 5hmC is enriched at the poised enhancers with the monomethylated histone H3 lysine 4 (H3K4me1) marks, but not at the active enhancers with the acetylated histone H3 lysine 27 (H3K27Ac) marks. Non-CG hydroxymethylation appears to be prevalent in the mitochondrial genome. We propose that some amounts of transiently stable 5hmCs may indicate a poised epigenetic state or demethylation intermediate, whereas others may suggest a locally accessible chromosomal environment for the TET enzymatic apparatus.
    Cell Reports 01/2013; · 7.21 Impact Factor
  • Hideharu Hashimoto, Xing Zhang, Xiaodong Cheng
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian thymine DNA glycosylase (TDG) excises the mismatched base, uracil, thymine, or 5-hydroxymethyluracil (5hmU), as well as removes 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) when paired with a guanine. In the previously solved structure of TDG in complex with DNA containing 5caC, the side chain of asparagine 157 (N157) contacts the 5-carboxyl moiety of 5caC via a weak hydrogen bond. We examined the role of N157 in recognition of 5caC by mutagenesis. The asparagine-to-alanine (N157A) mutant has no detectable base excision activity for a G:T mismatch, and its excision activity is reduced for other substrates including G:5caC. Unexpectedly, the asparagine-to-aspartate (N157D) mutant has a comparable base excision rate for G:5caC substrate to that of wild type, but it only has residual activity for G:U and no detectable activity for other substrates. We further show that the N157D mutant has higher activity for 5caC at a lower pH (6.0), suggesting that increased protonation of the carboxylate of 5caC and the aspartate facilitates base excision. The N157D mutant remains highly specific for 5caC even in the presence of large excess of genomic DNA, a property that can potentially be used for mapping the very low amount of 5caC in genomes.
    Journal of Molecular Biology 01/2013; · 3.91 Impact Factor

Publication Stats

5k Citations
911.85 Total Impact Points

Institutions

  • 1999–2014
    • Emory University
      • Department of Biochemistry
      Atlanta, Georgia, United States
  • 2012
    • Wayne State University
      Detroit, Michigan, United States
  • 2011
    • University of Chicago
      Chicago, Illinois, United States
  • 2010
    • Yale University
      • Department of Molecular Biophysics and Biochemistry
      New Haven, CT, United States
  • 2007–2008
    • Jacobs University
      • SES - School of Engineering & Science
      Bremen, Bremen, Germany
    • University of Toronto
      • Structural Genomics Consortium
      Toronto, Ontario, Canada
  • 2005
    • Wellcome Trust Sanger Institute
      Cambridge, England, United Kingdom
    • Universität Bremen
      Bremen, Bremen, Germany
  • 2003
    • University of Utah
      • Department of Biochemistry
      Salt Lake City, UT, United States
  • 2002
    • University of Louisville
      Louisville, Kentucky, United States
  • 1995–1996
    • Cold Spring Harbor Laboratory
      Cold Spring Harbor, New York, United States