Z Zheng

University of Toledo, Toledo, OH, United States

Are you Z Zheng?

Claim your profile

Publications (3)21.77 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The growth and progression of prostate cancer are dependent on androgens and androgen receptor (AR), which act by modulating gene expression. Utilizing a gene microarray approach, we have identified the alpha1-subunit gene of soluble guanylyl cyclase (sGC) as a novel androgen-regulated gene. A heterodimeric cytoplasmic protein composed of one alpha and one beta subunit, sGC mediates the widespread cellular effects of nitric oxide (NO). We report here that, in prostate cancer cells, androgens stimulate the expression of sGCalpha1. A cloned human sGCalpha1 promoter is activated by androgen in an AR-dependent manner, suggesting that sGCalpha1 may be a direct AR target gene. Disruption of sGCalpha1 expression severely compromises the growth of both androgen-dependent and androgen-independent AR-positive prostate cancer cells. Overexpression of sGCalpha1 alone is sufficient for stimulating prostate cancer cell proliferation. Interestingly, the major growth effect of sGCalpha1 is independent of NO and cyclic guanosine monophosphate, a major mediator of the sGC enzyme. These data strongly suggest that sGCalpha1 acts in prostate cancer via a novel pathway that does not depend on sGCbeta1. Tissue studies show that sGCalpha1 expression is significantly elevated in advanced prostate cancer. Thus, sGCalpha1 may be an important mediator of the procarcinogenic effects of androgens.
    Oncogene 04/2007; 26(11):1606-15. · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Androgens and the androgen receptor (AR) are involved in the growth and progression of prostate cancer. Our previous studies suggest that the proto-oncoprotein c-Jun is an AR coactivator that stimulates AR transactivation by mediating receptor dimerization and subsequent DNA binding. To study the physiological relevance of this c-Jun activity on AR, we have generated stable LNCaP cell lines expressing different levels of c-Jun. These cell lines exhibit a direct correlation between endogenous c-Jun levels and AR transcriptional activity and expression of endogenous androgen-regulated genes. Disruption by antisense RNA of endogenous c-Jun expression in LNCaP cells strongly compromises the androgen-dependent proliferation of these cells. In contrast, expression of a c-Jun mutant, which is fully active in coactivation of AR but deficient in AP-1 transactivation, significantly enhances androgen-dependent proliferation. This finding indicates that the coactivation function of c-Jun is sufficient for regulating androgen-induced growth of LNCaP cells. c-Jun also enhances AR transactivtion in androgen-independent LNCaP cells, which closely mimic hormone-refractory prostate cancer cells in gene expression and growth behavior. Importantly, siRNA-mediated repression of endogenous c-Jun expression results in markedly reduced growth of these cells, strongly suggesting an important biological role for c-Jun in hormone-refractory prostate cancer.
    Oncogene 12/2006; 25(54):7212-23. · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transactivation functions of the human androgen receptor (hAR) are regulated by several accessory factors that can be either positive or negative. One factor that has been previously shown to mediate hAR transactivation is the proto-oncoprotein c-Jun. The positive effect is a primary one, can be exerted by both endogenous and exogenous c-Jun, and requires multiple regions of c-Jun. However, the exact mechanism by which c-Jun exerts its enhancing function is unknown. In this study, we have used a mammalian two-hybrid system to ask if c-Jun influences the ligand-dependent amino- to carboxyl-terminal (N-to-C) interaction of hAR, which is thought to be responsible for the homodimerization of this receptor. Our results show that c-Jun enhances both hAR N-to-C terminal interaction and DNA binding in vitro. We have also tested a panel of c-Jun and c-Fos mutants for their activities on the N-to-C interaction, and the data demonstrate that the activities of these mutants parallel their activities on hAR transactivation. A mutation in the hAR activation function-2 (AF-2) abrogates N-to-C interaction, DNA binding, and transactivation, and these activities are not rescued by exogenous c-Jun. Interestingly, the p160 coactivator TIF2 can stimulate hAR N-to-C interaction, a finding consistent with the effect on hAR transactivation. These data strongly suggest that the hAR N-to-C interaction is the target of c-Jun action, and this activity requires a functional receptor AF-2.
    Journal of Biological Chemistry 12/2001; 276(48):44704-11. · 4.65 Impact Factor