Yoko Ishii

University of Toyama, Тояма, Toyama, Japan

Are you Yoko Ishii?

Claim your profile

Publications (41)118.1 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ulcerative colitis is a chronic inflammatory disease that frequently progresses to colon cancer. The tumor-promoting effect of inflammation is now widely recognized and understood. Recent studies have revealed that treatment with nicotine ameliorates colitis in humans and experimental murine models, whereas the effect of nicotine on colitis-associated colonic tumorigenesis remains unclear. In the present study, we examined the effect of nicotine on the development of acute colitis and colitis-associated cancer (CAC). The acute colitis model was induced by treatment with 3% dextran sulfate sodium (DSS) for 7 days, whereas the CAC model was induced by a combination of azoxymethane and repeated DSS treatment. Nicotine and a selective agonist of the α7 nicotinic acetylcholine receptor (nAChR) reduced the severity of DSS-induced acute colonic inflammation. In addition, the suppressive effect of nicotine on acute colitis was attenuated by an antagonist of α7nAChR. Furthermore, nicotine inhibited the IL-6 production of CD4 T cells in the DSS-induced inflamed colonic mucosa. We found that nicotine significantly reduced the number and size of colonic tumors in mice with CAC. Nicotine markedly inhibited the elevation of TNF-α and IL-6 mRNA as well as phosphorylated Stat3 expression in the colons of the tumor model mice. These results demonstrate that nicotine suppresses acute colitis and colitis-associated tumorigenesis, and this effect may be associated with the activation of α7nAChR. Furthermore, it is presumed that nicotine downregulates the expression of inflammatory mediators such as IL-6/Stat3 and TNF-α, thereby reducing the colonic tumorigenesis associated with chronic colitis.
    American journal of physiology. Gastrointestinal and liver physiology. 09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes mellitus is the leading cause of blindness and end-stage renal disease. To understand the pathogenesis of diabetic complications, suitable animal models for this disease have been needed. The activation of Ca2+/ calmodulin-dependent protein kinase II (CaMKII) in pancreatic β-cells has been thought to play a central role in Ca2+-mediated insulin secretion. We generated transgenic mice over expressing the constitutively active-type CaMKIIα (Thr286Asp) in β-cells, which showed very high plasma glucose levels and exhibited the features of diabetic nephropathy and retinopathy. In cDNA microarray analysis osteopontin mRNA increased in CaMKIIα transgenic mice. In quantitative real-time RT-PCR analyses, not only M1 macrophage marker genes but also M2 macrophage marker genes were over expressed in renal cortex of CaMKIIα transgenic mice. The mice were crossed with conditional knockout mice in which platelet-derived growth factor receptor-β gene (Pdgfr-β) was deleted postnatal. The increased oxidative stress in the kidneys of the CaMKII α transgenic mice, which was shown by the increased urinary 8-hydroxydeoxyguanosine excretion and the increased expression of NAD (P) H oxidase 4, was decreased by Pdgfr-β deletion. The CaMKIIα (Thr286Asp) transgenic mice will be valuable as a novel model of severe insulin-dependent diabetes accompanied by an early progression of diabetic micro vascular complications.
    Austin Journal of Endocrinology and Diabetes. 01/2014; 1(1):9.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Because the renin-angiotensin-aldosterone system has been implicated in the development of insulin resistance and promotion of fibrosis in some tissues, such as the vasculature, we examined the effect of eplerenone, a selective mineralocorticoid receptor (MR) antagonist, on non-alcoholic steatohepatitis (NASH) and metabolic phenotypes in a mouse model reflecting metabolic syndrome in humans. We adopted liver-specific transgenic mice overexpressing the active form of sterol response element binding protein 1c (SREBP1c) fed a high-fat and fructose diet (HFFD) as the animal model in the present study. When wild-type (WT) C57BL/6 and liver-specific SREBP1c transgenic (Tg) mice grew while being fed HFFD for 12 weeks, body weight and epididymal fat weight increased in both groups with an elevation in blood pressure and dyslipidemia. Glucose intolerance and insulin resistance were also observed. Adipose tissue hypertrophy and macrophage infiltration with crown-like structure formation were also noted in mice fed HFFD. Interestingly, the changes noted in both genotypes fed HFFD were significantly ameliorated with eplerenone. HFFD-fed Tg mice exhibited the histological features of NASH in the liver, including macrovesicular steatosis and fibrosis, whereas HFFD-fed WT mice had hepatic steatosis without apparent fibrotic changes. Eplerenone effectively ameliorated these histological abnormalities. Moreover, the direct suppressive effects of eplerenone on lipopolysaccharide-induced TNFalpha production in the presence and absence of aldosterone were observed in primary-cultured Kupffer cells and bone marrow-derived macrophages. These results indicated that eplerenone prevented the development of NASH and metabolic abnormalities in mice by inhibiting inflammatory responses in both Kupffer cells and macrophages.
    AJP Endocrinology and Metabolism 10/2013; · 4.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cilostazol, an inhibitor of phosphodiesterase 3B, is widely used as an anti-platelet drug in diabetic patients. Recently, cilostazol has been shown to promote preadipocyte differentiation to mature adipocyte and affect glucose homeostasis; therefore, we examined the impact of cilostazol on impaired glucose metabolism in adipose tissues of diabetic db/db mice. Administration of cilostazol at 100-300mg/kg/day significantly improved glucose tolerance and insulin sensitivity in a dose-dependent manner in db/db mice, whereas these effects were not observed in non-diabetic control mice. Cilostazol reduced the adipocyte size and suppressed mRNA expressions of monocyte chemoattractant protein 1, CD11c, and tumor necrosis factor α (TNFα) in the epididymal fat tissue of db/db mice. As for the cellular mechanism, cilostazol attenuated lipopolysaccharide (LPS)-induced TNFα expression by decreasing the mRNA and protein levels of Toll-like receptor 4 in Raw264.3 macrophages. Cilostazol also effectively ameliorated the TNFα-induced decrease of insulin-stimulated Akt phosphorylation and [(3)H]2-deoxyglucose uptake by suppressing c-Jun N terminal kinase-mediated serine phosphorylation of insulin receptor substrate 1 in 3T3-L1 adipocytes. Importantly, the improvement of impaired insulin signaling was blunted by pretreatment with KT5720, a protein kinase A inhibitor, but not with GW9662, a peroxisome proliferator-activated receptor γ. These results indicate that cilostazol suppressed TNFα production from macrophages and attenuated TNFα-induced chronic inflammation in adipose tissue, leading to the improvement of glucose intolerance and insulin resistance in obese diabetic mice. Thus, the present study reveals an additional benefit in the use of cilostazol in the treatment of patients with type 2 diabetes.
    European journal of pharmacology 03/2013; · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activation of neural stem/progenitor cells (NSPCs) is a potential therapeutic strategy of neurological disorders. In this study, NSPCs of subventricular zone were isolated and cultured from platelet-derived growth factor-β-receptor-knockout (PDGFR-β-/-) mice of postnatal day 1 (P1) and P28, and the roles of PDGFR-β were examined in these cells. In PDGFR-β-preserving control NSPCs, stem cell activities, such as numbers and diameters of secondary neurospheres, cell proliferation and survival rates, were significantly higher in P1 NSPCs than those in P28 NSPCs. In PDGFR-β-/- NSPCs, most of these parameters were decreased as compared with age-matched controls. Among them, the decrease of secondary neurosphere formation was most striking in P1 and P28 PDGFR-β-/- NSPCs and in P28 control NSPCs as compared with P1 control NSPCs. PCR-array and following qRT-PCR analyses demonstrated that expressions of fibroblast growth factor-2 (FGF2) and exons IV-IX of brain-derived neurotrophic factor (BDNF) were decreased, and noggin was increased in P1 PDGFR-β-/- as compared with P1 controls. Addition of BDNF rescued the number and diameter of secondary neurospheres in P1 PDGFR-β-/- NSPCs to similar levels as controls. The expressions of PDGFs and PDGFRs in control NSPCs were increased along with the differentiation-induction, where phosphorylated PDGFR-β was co-localized with neuronal and astrocyte differentiation markers. In controls, the neuronal differentiation was decreased, and the glial differentiation was increased from P1 to P28 NSPCs. Compared with P1 controls, neuronal differentiation was reduced in P1 PDGFR-β-/- NSPCs, whereas glial differentiation was comparable between the two genotypes. These results suggest that PDGFR-β signaling is important for the self-renewal and multipotency of NSPCs, particularly in neonatal NSPCs. BDNF, FGF2, and noggin may be involved in the effects of PDGFR-β signaling in these cells. Accordingly, the activation of PDGFR-β in NSPCs may be a novel therapeutic strategy of neurological diseases.
    Neuroscience 02/2013; · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress is crucially involved in the pathogenesis of neurological diseases such as stroke and degenerative diseases. We previously demonstrated that platelet-derived growth factors (PDGFs) protected neurons from H2O2-induced oxidative stress and indicated the involvement of PI3K-Akt and MAP kinases as an underlying mechanism. Ca(2+) overload has been shown to mediate the neurotoxic effects of oxidative stress and excitotoxicity. We examined the effects of PDGFs on H2O2-induced Ca(2+) overload in primary cultured neurons to further clarify their neuroprotective mechanism. H2O2-induced Ca(2+) overload in neurons in a dose-dependent manner, while pretreating neurons with PDGF-BB for 24 hours largely suppressed it. In a comparative study, the suppressive effects of PDGF-BB were more potent than those of PDGF-AA. We then evaluated calpain activation, which was induced by Ca(2+) overload and mediated both apoptotic and nonapoptotic cell death. H2O2-induced calpain activation in neurons in a dose-dependent manner. Pretreatment of PDGF-BB completely blocked H2O2-induced calpain activation. To the best of our knowledge, the present study is the first to demonstrate the mechanism underlying the neuroprotective effects of PDGF against oxidative stress via the suppression of Ca(2+) overload and inactivation of calpain and suggests that PDGF-BB may be a potential therapeutic target of neurological diseases.
    Oxidative Medicine and Cellular Longevity 01/2013; 2013:367206.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The superior colliculus (SC), a relay nucleus in the subcortical visual pathways, is implicated in socioemotional behaviors. Homeoprotein Otx2 and β subunit of receptors of platelet-derived growth factor (PDGFR- β ) have been suggested to play an important role in development of the visual system and development and maturation of GABAergic neurons. Although PDGFR- β -knockout (KO) mice displayed socio-emotional deficits associated with parvalbumin (PV-)immunoreactive (IR) neurons, their anatomical bases in the SC were unknown. In the present study, Otx2 and PV-immunolabeling in the adult mouse SC were investigated in the PDGFR- β KO mice. Although there were no differences in distribution patterns of Otx2 and PV-IR cells between the wild type and PDGFR- β KO mice, the mean numbers of both of the Otx2- and PV-IR cells were significantly reduced in the PDGFR- β KO mice. Furthermore, average diameters of Otx2- and PV-IR cells were significantly reduced in the PDGFR- β KO mice. These findings suggest that PDGFR- β plays a critical role in the functional development of the SC through its effects on Otx2- and PV-IR cells, provided specific roles of Otx2 protein and PV-IR cells in the development of SC neurons and visual information processing, respectively.
    BioMed research international. 01/2013; 2013:848265.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Age-related loss of ovarian function promotes adiposity and insulin resistance in women. Estrogen (E(2)) directly enhances insulin sensitivity and suppresses lipogenesis in peripheral tissues. Recently, the central actions of E(2) in the regulation of energy homeostasis are becoming clearer; however, the functional relevance and degree of contribution of the central vs. peripheral actions of E(2) are currently unknown. Therefore, we prepared and analyzed four groups of mice. 1) Control: sham-operated mice fed a regular diet, 2) OVX-HF: ovariectomized (OVX) mice fed a 60% high-fat diet (HF), 3) E2-SC: OVX-HF mice subcutaneously treated with E(2), and 4) E2-ICV: OVX-HF mice treated with E(2) intracerebroventricularly. OVX-HF mice showed increased body weight with both visceral and subcutaneous fat volume enlargement, glucose intolerance, and insulin resistance. Both E2-SC and E2-ICV equally ameliorated these abnormalities. Although the size of adipocytes and number of CD11c-positive macrophages in perigonadal fat in OVX-HF were reduced by both E(2) treatments, peripherally administered E(2) decreased the expression of TNFα, lipoprotein lipase, and fatty acid synthase in the white adipose tissue (WAT) of OVX-HF. In contrast, centrally administered E(2) increased hormone-sensitive lipase in WAT, decreased the hepatic expression of gluconeogenic enzymes, and elevated core body temperature and energy expenditure with marked upregulation of uncoupling proteins in the brown adipose tissue. These results suggest that central and peripheral actions of E(2) regulate insulin sensitivity and glucose metabolism via different mechanisms, and their coordinated effects may be important to prevent the development of obesity and insulin resistance in postmenopausal women.
    AJP Endocrinology and Metabolism 05/2012; 303(4):E445-56. · 4.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The physiological role of platelet-derived growth factor (PDGF) in the central nervous system (CNS) synaptic function remains uncharacterized. Here we identify physiological roles of PDGF receptor-β (PDGFR-β) in the CNS by conditional knockout of the gene encoding it. In the hippocampus, PDGFR-β colocalized immunohistochemically with both presynaptic synaptophysin and postsynaptic density-95 (PSD-95). In the hippocampal CA1 region, expression levels of postsynaptic proteins, including spinophilin, drebrin, and PSD-95, were significantly decreased in PDGFR-β knockout mice, although presynaptic synaptophysin levels remained comparable to controls. Interestingly, in hippocampal CA1 pyramidal neurons, dendritic spine density in PDGFR-β knockout mice was significantly decreased compared with that seen in wild-type mice, although spine length and number of dendritic branches remained unchanged. Consistent with these findings, impairment in hippocampal long-term potentiation (LTP) and in hippocampus-dependent memory formation were seen in PDGFR-β knockout mice. These results suggest PDGFR-β plays critical roles in spine morphology and memory formation in mouse brain.
    Hippocampus 10/2011; 22(6):1371-8. · 5.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although platelet-derived growth factors (PDGFs) and receptors (PDGFRs) are abundantly expressed in the central nervous system, their functions largely remain elusive. We investigated the role of PDGFR-β in tissue responses and functional recovery after photothrombolic middle cerebral artery occlusion (MCAO). In the normal adult mouse brain, PDGFR-β was mainly localized in neurons and in pericyte/vascular smooth muscle cells (PC/vSMCs). From 3 to 28 days after MCAO, postnatally induced systemic PDGFR-β knockout mice (Esr-KO) exhibited the delayed recovery of body weight and behavior, and larger infarction volume than controls. In Esr-KO, PC/vSMC coverage was decreased and vascular leakage of infused fluorescent-labeled albumin was extensive within the ischemic lesion, but not in the uninjured cerebral cortex. Angiogenesis levels were comparable between Esr-KO and controls. In another PDGFR-β conditional KO mouse (Nestin-KO), PDGFR-β was deleted in neurons and astrocytes from embryonic day 10.5, but was preserved in PC/vSMCs. After MCAO, vascular leakage and infarction volume in Nestin-KO were worse than controls, but partly improved compared with Esr-KO. Astroglial scar formation in both Esr-KO and Nestin-KO was similarly reduced compared with controls after MCAO. These data suggested that PDGFR-β signaling is crucial for neuroprotection, endogenous tissue repair, and functional recovery after stroke by targeting neurons, PC/vSMCs, and astrocytes.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 09/2011; 32(2):353-67. · 5.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The activation of platelet-derived growth factor receptor-β (PDGFR-β) signalling is increased in the glomeruli and tubules of diabetic animals. In this study, we examined the role of PDGFR-β signalling during the development of diabetic nephropathy. We recently generated pancreatic beta cell-specific Ca(2+)/calmodulin-dependent protein kinase IIα (Thr286Asp) transgenic mice (CaMKIIα mice), which show very high plasma glucose levels up to 55.5 mmol/l and exhibit the features of diabetic nephropathy. These mice were crossed with conditional knockout mice in which Pdgfr-β (also known as Pdgfrb) was deleted postnatally. The effect of the deletion of the Pdgfr-β gene on diabetic nephropathy in CaMKIIα mice was evaluated at 10 and 16 weeks of age. The plasma glucose concentrations and HbA(1c) levels were elevated in the CaMKIIα mice from 4 weeks of age. Variables indicative of diabetic nephropathy, such as an increased urinary albumin/creatinine ratio, kidney weight/body weight ratio and mesangial area/glomerular area ratio, were observed at 16 weeks of age. The postnatal deletion of the Pdgfr-β gene significantly decreased the urinary albumin/creatinine ratio and mesangial area/glomerular area ratio without affecting the plasma glucose concentration. Furthermore, the increased oxidative stress in the kidneys of the CaMKIIα mice as shown by the increased urinary 8-hydroxydeoxyguanosine (8-OHdG) excretion and the increased expression of NAD(P)H oxidase 4 (NOX4), glutathione peroxidase 1 (GPX1) and manganese superoxide dismutase (MnSOD) was decreased by Pdgfr-β gene deletion. The activation of PDGFR-β signalling contributes to the progress of diabetic nephropathy, with an increase in oxidative stress and mesangial expansion in CaMKIIα mice.
    Diabetologia 08/2011; 54(11):2953-62. · 6.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations of the ATRX gene, which encodes an ATP-dependent chromatin-remodeling factor, were identified in patients with α-thalassemia X-linked mental retardation (ATR-X) syndrome. There is a milder variant of ATR-X syndrome caused by mutations in the Exon 2 of the gene. To examine the impact of the Exon 2 mutation on neuronal development, we generated ATRX mutant (ATRX(ΔE2)) mice. Truncated ATRX protein was produced from the ATRX(ΔE2) mutant allele with reduced expression level. The ATRX(ΔE2) mice survived and reproduced normally. There was no significant difference in Morris water maze test between wild-type and ATRX(ΔE2) mice. In a contextual fear conditioning test, however, total freezing time was decreased in ATRX(ΔE2) mice compared to wild-type mice, suggesting that ATRX(ΔE2) mice have impaired contextual fear memory. ATRX(ΔE2) mice showed significantly reduced long-term potentiation in the hippocampal CA1 region evoked by high-frequency stimulation. Moreover, autophosphorylation of calcium-calmodulin-dependent kinase II (αCaMKII) and phosphorylation of glutamate receptor, ionotropic, AMPA 1 (GluR1) were decreased in the hippocampi of the ATRX(ΔE2) mice compared to wild-type mice. These findings suggest that ATRX(ΔE2) mice may have fear-associated learning impairment with the dysfunction of αCaMKII and GluR1. The ATRX(ΔE2) mice would be useful tools to investigate the role of the chromatin-remodeling factor in the pathogenesis of abnormal behaviors and learning impairment.
    Hippocampus 06/2011; 21(6):678-87. · 5.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mesangial cell functions are critically regulated by platelet-derived growth factor receptor (PDGFR)-β signals. In contrast to the well-established role of PDGFR-β in the development of kidney glomerulus, its role in adult kidney glomerulus remains controversial. We deleted the PDGFR-β gene postnatally using the Cre-loxP system and analysed the long-term effects of PDGFR-β inhibition on glomerular changes associated with ageing and subtotal nephrectomy. Mice depleted of PDGFR-β (Deletant) survived without showing apparent abnormalities. In glomerulus of Deletant, mesangial PDGFR-β expression was decreased. The glomerular cell numbers were low, and the ageing-associated increment of mesangial matrix area was suppressed in Deletant as compared with control mice with conserved PDGFR-β expression (Floxed) at 48 weeks of age. At 2 weeks after subtotal nephrectomy, albuminuria and the elevation of blood urea nitrogen were aggravated in Deletant. At this time, Deletant showed specific glomerular changes that included many hypertrophic podocytes and collapsed capillaries. At 12 weeks after subtotal nephrectomy, the kidney function in Deletant restored to the level of Floxed; however, the Deletant glomeruli showed dilated capillaries, decreased cell number and reduced mesangial matrix area with less extended mesangial cell processes as compared with Floxed. The long-term inhibition of mesangial PDGFR-β prevented age-related mesangial expansion. On the other hand, the kidney glomeruli with decreased PDGFR-β showed increased vulnerability to the acute nephron loss, and showed mesangial insufficiency in the following adaptive process.
    Nephrology Dialysis Transplantation 02/2011; 26(2):458-68. · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Platelet-derived growth factor (PDGF) is a potent mitogen. Extensive in vivo studies of PDGF and its receptor (PDGFR) genes have reported that PDGF plays an important role in embryogenesis and development of the central nervous system (CNS). Furthermore, PDGF and the β subunit of the PDGF receptor (PDGFR-β) have been reported to be associated with schizophrenia and autism. However, no study has reported on the effects of PDGF deletion on mice behavior. Here we generated novel mutant mice (PDGFR-β KO) in which PDGFR-β was conditionally deleted in CNS neurons using the Cre/loxP system. Mice without the Cre transgene but with floxed PDGFR-β were used as controls. Both groups of mice reached adulthood without any apparent anatomical defects. These mice were further examined by conducting several behavioral tests for spatial memory, social interaction, conditioning, prepulse inhibition, and forced swimming. The test results indicated that the PDGFR-β KO mice show deficits in all of these areas. Furthermore, an immunohistochemical study of the PDGFR-β KO mice brain indicated that the number of parvalbumin (calcium-binding protein)-positive (i.e., putatively γ-aminobutyric acid-ergic) neurons was low in the amygdala, hippocampus, and medial prefrontal cortex. Neurophysiological studies indicated that sensory-evoked gamma oscillation was low in the PDGFR-β KO mice, consistent with the observed reduction in the number of parvalbumin-positive neurons. These results suggest that PDGFR-β plays an important role in cognitive and socioemotional functions, and that deficits in this receptor may partly underlie the cognitive and socioemotional deficits observed in schizophrenic and autistic patients.
    PLoS ONE 01/2011; 6(3):e18004. · 3.53 Impact Factor
  • Neuroscience Research - NEUROSCI RES. 01/2011; 71.
  • Neuroscience Research - NEUROSCI RES. 01/2011; 71.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since ovarian cancer during pregnancy is rare, the decisions regarding pregnancy discontinuation or fertility preservation are often difficult. We report three ovarian cancer cases detected at early, mid and late pregnancy periods in which both babies and mothers were saved. In particular, case 2 is the first reported instance of a sertoliform endometrioid carcinoma of the ovary during pregnancy. In addition, we review the clinical characteristics of previously reported patients with stage I ovarian cancer diagnosed during pregnancy. Even with stage Ia ovarian cancer, restaging laparotomy at cesarean section or post-delivery may be important to determine the treatment plan because staging during pregnancy is rarely complete.
    Journal of Obstetrics and Gynaecology Research 12/2010; 37(6):650-5. · 0.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Loss of the q22 band of chromosome 16 is a frequent genetic event in breast cancer, and the candidate tumor suppressor gene, ATBF1, has been implicated in breast cancer by genomic deletion, transcriptional down-regulation, and association with better prognostic parameters. In addition, estrogen receptor (ER)-positive breast cancer expresses a higher level of ATBF1, suggesting a role of ATBF1 in ER-positive breast cancer. In this study, we examined whether and how ATBF1 affects the ER function in breast cancer cells. We found that ATBF1 inhibited ER-mediated gene transcription, cell growth, and proliferation in ER-positive breast cancer cells. In vitro and in vivo immunoprecipitation experiments revealed that ATBF1 interacted physically with the ER and that multiple domains in both ATBF1 and ER proteins mediated the interaction. Furthermore, we demonstrated that ATBF1 inhibited ER function by selectively competing with the steroid receptor coactivator AIB1 but not GRIP1 or SRC1 for binding to the ER. These findings not only support the concept that ATBF1 plays a tumor-suppressive role in breast cancer, they also provide a mechanism for how ATBF1 functions as a tumor suppressor in breast cancer.
    Journal of Biological Chemistry 10/2010; 285(43):32801-9. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of platelet-derived growth factor (PDGF)-BB / PDGF receptor (PDGFR)-beta signal in inhibition of synaptic transmission by hypoxia is unclear. In the nucleus tractus solitarius neurons, hypoxia with N(2) or NaCN decreased the amplitude of excitatory postsynaptic currents (EPSCs) similarly in wild type (WT) and PDGFR-beta gene-knockout (KO) mice. Recovery of EP SCs after a high concentration of NaCN in KO mice was significantly faster than that in WT mice, while recovery after a low concentration of NaCN or N(2) was not different between both mice. These results suggest that the PDGF-BB / PDGFR-beta signal modulates the excitatory synaptic transmission during hypoxia.
    Journal of Pharmacological Sciences 03/2010; 112(4):477-81. · 2.15 Impact Factor
  • Journal of Biological Chemistry - J BIOL CHEM. 01/2010; 285(35).

Publication Stats

366 Citations
118.10 Total Impact Points

Institutions

  • 2006–2013
    • University of Toyama
      • • Department of Pathology
      • • Department of Obstetrics and Gynecology
      • • Department of Internal Medicine 1
      • • Department of Biochemistry
      Тояма, Toyama, Japan
  • 2009–2010
    • Aichi Gakuin University
      • School of Pharmacy
      Nagoya-shi, Aichi-ken, Japan
  • 2008
    • University of Gothenburg
      • Department of Medical Biochemistry and Cell Biology
      Göteborg, Vaestra Goetaland, Sweden
  • 2004
    • Shiga University of Medical Science
      • Department of Pediatrics
      Ōtsu-shi, Shiga-ken, Japan
  • 2003–2004
    • Toyama Medical and Pharmaceutical University
      Тояма, Toyama, Japan