S. Lupi

Sapienza University of Rome, Roma, Latium, Italy

Are you S. Lupi?

Claim your profile

Publications (215)451.07 Total impact

  • Source
    Plasmonics 10/2014; · 2.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report an infrared spectroscopy study of a 200 nm thick FeSe$_{0.5}$Te$_{0.5}$ film grown on LaAlO$_3$ with T$_c$=13.7 K. We analyze the 20 K normal state absolute reflectance R$_N$ measured over a broad infrared range and the reflectance ratio R$_S$/R$_N$, R$_S$ being the superconducting state reflectance, measured at 6 K in the terahertz range down to 12 cm$^{-1}$. We show that the normal state model conductivity is given by two Drude components, one of which much broader and intense than the other. In the superconducting state, we find that a gap $\Delta$=37$\pm$3 cm$^{-1}$ opens up in the narrow Drude band only, while the broad Drude band results to be ungapped, at least in the explored spectral range. Our results show that only a two-band model can coherently describe both normal and superconducting state data.
    10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The optical properties of a V4O7 single crystal have been investigated from the high temperature metallic phase down to the low temperature antiferromagnetic insulating one. The temperature dependent behavior of the optical conductivity across the metal-insulator transition (MIT) can be explained in a polaronic scenario. Charge carriers form strongly localized polarons in the insulating phase as suggested by a far-infrared charge gap abruptly opening at T_MIT = 237 K. In the metallic phase instead the presence of a Drude term is indicative of fairly delocalized charges with a moderately renormalized mass m* = 5m_e. The electronic spectral weight is almost recovered on an energy scale of 1 eV, which is much narrower compared to VO2 and V2O3 cases. Those findings suggest that electron-lattice interaction rather than electronic correlation is the driving force for V4O7 metal-insulator transition.
    07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exploiting the localization and enhancement capabilities of terahertz resonant dipole nanoantennas coupled through nanogaps, we present an effective method to perform terahertz spectroscopy on an extremely small number of nano-objects.
    CLEO: Science and Innovations; 06/2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Photosynthetic reaction centers develop a stable charge separated state upon illumination. To investigate the molecular vibrations associated with the illuminated state of a reaction center we recorded terahertz absorption spectra of the photosynthetic reaction center from Rhodobacter sphaeroides in the dark and upon illumination and observed a small, but significant THz absorption increase in the 20 to 130 cm−1 spectral region. Reaction centers show very similar terahertz absorption increase when solubilized in detergents and in a lipidic sponge phase indicating that the nature of the bulk solvent has limited influence on the vibrational spectrum. The absorption change of the isolated LM subunit is very similar to that of the intact reaction center. Through temperature control experiments we show that 89% of the absorption change is likely attributed to the non-thermal activation of the protein molecules. These results indicate that picosecond molecular vibrations change primarily in the cofactors and/or in the evolutionary conserved core of the reaction center upon illumination, whereas the nuclear motions of the H-subunit and the bulk solvent have limited impact on the terahertz spectral changes.
    RSC Advances 05/2014; 4(49):25502-25509. · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been recently reported (S. Lee et al., Nature Materials 12, 392, 2013) that superlattices where layers of the 8% Co-doped BaFe2As2 superconducting pnictide are intercalated with non superconducting ultrathin layers of either SrTiO3 or of oxygen-rich BaFe2As2, can be used to control flux pinning, thereby increasing critical fields and currents, without significantly affecting the critical temperature of the pristine superconducting material. However, little is known about the electron properties of these systems. Here we investigate the electrodynamics of these superconducting pnictide superlattices in the normal and superconducting state by using infrared reflectivity, from THz to visible range. We find that multi-gap structure of these superlattices is preserved, whereas some significant changes are observed in their electronic structure with respect to those of the original pnictide. Our results suggest that possible attempts to further increase the flux pinning may lead to a breakdown of the pnictide superconducting properties.
    Applied Physics Letters 04/2014; 104(22). · 3.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes the scientific aims and potentials as well as the preliminary technical design of IRIDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity “particles factory”, based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provid eunique research possibilities for particle physics, for condensed matter physics,chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of science and technology. IRIDE is also supposed to be realized in subsequent stages of development depending on the assigned priorities.
    Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 03/2014; 740:138-146. · 1.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: At SPARC-LAB, we have installed an Electro-Optic Sampling (EOS) experiment for single shot, non-destructive measurements of the longitudinal distribution charge of individual electron bunches. The profile of the electron bunch field is electro-optically encoded into a Ti:Sa laser, having 130 fs (rms) pulse length, directly derived from the photocathode's laser. The bunch profile information is spatially retrieved, i.e., the laser crosses with an angle of 30° with respect to the normal to the surface of EO crystal (ZnTe, GaP) and the bunch longitudinal profile is mapped into the laser's transverse profile. In particular, we used the EOS for a single-shot direct visualization of the time profile of a comb-like electron beam, consisting of two bunches, about 100 fs (rms) long, sub-picosecond spaced with a total charge of 160 pC. The electro-optic measurements (done with both ZnTe and GaP crystals) have been validated with both RF Deflector (RFD) and Michelson interferometer measurements.
    02/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Optical pulses at THz and mid-infrared frequencies tuned to specific vibrational resonances modulate the lattice along chosen normal mode coordinates. In this way, solids can be switched between competing electronic phases and new states are created. Here, we use vibrational modulation to make electronic interactions (Hubbard-U) in Mott-insulator time dependent. Mid-infrared optical pulses excite localized molecular vibrations in ET-F2TCNQ, a prototypical one-dimensional Mott-insulator. A broadband ultrafast probe interrogates the resulting optical spectrum between THz and visible frequencies. A red-shifted charge-transfer resonance is observed, consistent with a time-averaged reduction of the electronic correlation strength U. Secondly, a sideband manifold inside of the Mott-gap appears, resulting from a periodically modulated U. The response is compared to computations based on a quantum-modulated dynamic Hubbard model. Heuristic fitting suggests asymmetric holon-doublon coupling to the molecules and that electron double-occupancies strongly squeeze the vibrational mode.
    Scientific Reports 01/2014; 4:3823. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: La1.8-xEu0.2SrxCuO4 (LESCO) is the member of the 214 family which exhibits the largest intervals among the structural, charge ordering (CO), magnetic, and superconducting transition temperatures. By using new dc transport measurements and data in the literature we construct the phase diagram of LESCO between x = 0.8 and 0.20. This phase diagram has been further probed in ac, by measuring the optical conductivity {\sigma}1({\omega}) of three single crystals with x = 0.11, 0.125, and 0.16 between 10 and 300 K in order to associate the extra-Drude peaks often observed in the 214 family with a given phase. The far-infrared peak we detect in underdoped LESCO is the hardest among them, survives up to room temperature and is associated with charge localization rather than with ordering. At the CO transition for the commensurate doping x = 0.125 instead the extra-Drude peak hardens and a pseudogap opens in {\sigma}1({\omega}), approximately as wide as the maximum superconducting gap of LSCO.
    10/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is widely recognized that a central role in conferring stability to the structure of proteins against misfolding and aggregation is played by the formation of oligomers. The case of insulin is prototypical in this respect: in our body it is stored up in stable inactive hexameric assemblies whereas only in its monomeric form it recovers the role of regulating carbohydrate and fat metabolism. In the present paper, exploiting the optimal coupling between FTIR spectroscopy and diamond anvil cell technique, we probe the stability of different insulin oligomeric forms under high pressure, namely over the ranges 0–15 kbar for water solution and 0–80 kbar for dry powder. Results obtained show different responses to volume compression for the different assemblies being the structure of monomers and dimers remarkably more affected by compression than hexamers. Moreover by comparing the results obtained using water solution and dry powder we were able to draw important considerations about the role of water in the high pressure unfolding processes.
    Journal of Molecular Structure 10/2013; 1050:159-165. · 1.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present an experimental study of subwavelength hole arrays in thin metal films employed as surface-enhanced optical sensors operating in the mid-infrared. The extremely narrow surface plasmon polariton spectral resonances are fitted to an analytical Fano interference model in the wavelength range 2–10 μm. In general, the resonance frequency shifts after deposition of few-molecule layers (3.2–24 nm thickness) according to electrodynamic polarization models, hence allowing for label-free sensing. The absolute value of the shift is shown to depend on the overlap between the electric field distribution of the specific surface plasmon mode and the molecular layer, as verified by electromagnetic simulations. Biochemical sensor application is finally demonstrated by determining, from a single mid-infrared measurement, both the thickness and the absorption spectrum of phospholipid monolayers and trilayers, obtained by liposome adsorption.
    The Journal of Physical Chemistry C. 09/2013; 117(37):19119–19126.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new facility named SPARC_LAB has been recently launched at the INFN National Laboratories in Frascati, merging the potentialities of the former projects SPARC and PLASMONX. We describe in this paper the status and the future perspectives at the SPARC_LAB facility.
    Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms 08/2013; 309:183-188. · 1.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This report describes the scientific aims and potentials as well as the preliminary technical design of IRIDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity 'particle factory', based on a combination of a high duty cycle radio-frequency superconducting electron linac and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of science and technology. IRIDE will contribute to open new avenues of discoveries and to address most important riddles: What does matter consist of? What is the structure of proteins that have a fundamental role in life processes? What can we learn from protein structure to improve the treatment of diseases and to design more efficient drugs? But also how does an electronic chip behave under the effect of radiations? How can the heat flow in a large heat exchanger be optimized? The scientific potential of IRIDE is far reaching and justifies the construction of such a large facility in Italy in synergy with the national research institutes and companies and in the framework of the European and international research. It will impact also on R&D work for ILC, FEL, and will be complementarity to other large scale accelerator projects. IRIDE is also intended to be realized in subsequent stages of development depending on the assigned priorities.
    07/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmons are quantized collective oscillations of electrons and have been observed in metals and doped semiconductors. The plasmons of ordinary, massive electrons have been the basic ingredients of research in plasmonics and in optical metamaterials for a long time. However, plasmons of massless Dirac electrons have only recently been observed in graphene, a purely two-dimensional electron system. Their properties are promising for novel tunable plasmonic metamaterials in the terahertz and mid-infrared frequency range. Dirac fermions also occur in the two-dimensional electron gas that forms at the surface of topological insulators as a result of the strong spin-orbit interaction existing in the insulating bulk phase. One may therefore look for their collective excitations using infrared spectroscopy. Here we report the first experimental evidence of plasmonic excitations in a topological insulator (Bi2Se3). The material was prepared in thin micro-ribbon arrays of different widths W and periods 2W to select suitable values of the plasmon wavevector k. The linewidth of the plasmon was found to remain nearly constant at temperatures between 6 K and 300 K, as expected when exciting topological carriers. Moreover, by changing W and measuring the plasmon frequency in the terahertz range versus k we show, without using any fitting parameter, that the dispersion curve agrees quantitatively with that predicted for Dirac plasmons.
    Nature Nanotechnology 07/2013; · 31.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 4-hydroxycyanobenzene (4HCB) single (SCs) and polycrystals (PCs) have been analyzed by means of both unpolarized and linearly polarized (LP) infrared (IR) beams. Most of the signals found at room temperature (298 K) have been assigned to well defined vibrational modes. Using LP-IR beam and keeping the beam polarization aligned with either the a or the b crystal axis, anisotropic spectra of SCs were also attributed. The differences between the LP and unpolarized spectra of SCs are discussed in view of spatially anisotropic vibronic couplings between the benzenic pi-electrons and the molecular functional groups (FGs), with reference to the overall lattice arrangement and the polarizability of the FGs. In addition, signals suggesting the low concentration presence of tautomers within the crystal were detected. LP-IR measurements of SCs in the temperature range between 298 and 120 K are also reported and discussed, with particular reference to the hydrogen bonding-related functional groups of 4HCB, allowing to assign otherwise non clearly attributable OH bending signals, and to infer an anisotropic shrinking of the crystals. Overall, the presented results show that the LP-IR is a valuable tool for non-contact, non-destructive characterization of organic semiconducting single crystals.
    The Journal of Physical Chemistry A 07/2013; · 2.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here we report an optical investigation in the terahertz region of a 40 nm ultrathin BaFe$_{1.84}$Co$_{0.16}$As$_2$ superconducting film with superconducting transition temperature T$_c$ = 17.5 K. A detailed analysis of the combined reflectance and transmittance measurements showed that the optical properties of the superconducting system can be described in terms of a two-band, two-gap model. The zero temperature value of the large gap $\Delta_B$, which seems to follow a BCS-like behavior, results to be $\Delta_B$(0) = 17 cm$^{-1}$. For the small gap, for which $\Delta_A$(0) = 8 cm$^{-1}$, the temperature dependence cannot be clearly established. These gap values and those reported in the literature for the BaFe$_{2-x}$Co$_{x}$As$_2$ system by using infrared spectroscopy, when put together as a function of T$_c$, show a tendency to cluster along two main curves, providing a unified perspective of the measured optical gaps. Below a temperature around 20 K, the gap-sizes as a function of T$_c$ seem to have a BCS-like linear behavior, but with different slopes. Above this temperature, both gaps show different supra-linear behaviors.
    Physics of Condensed Matter 06/2013; 86(6). · 1.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on an infrared study on the undoped compound BaFe2As2 as a function of pressure (up to about 10 GPa) at three temperatures (300, 160, and 110 K). The evolution with pressure and temperature of the optical conductivity shows that by increasing pressure, the mid-infrared absorptions associated with magnetic order are lowered while the Drude term increases, indicating the evolution towards a conventional metallic state. We evaluate the spectral weight dependence on pressure comparing it to that previously found upon doping. All the optical results indicate that lattice modifications cannot be recognized as the only parameter determining the low-energy electrodynamics in these compounds.
    Physical Review B 06/2013; 85(17). · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present high-quality optical data and density functional perturbation theory calculations for the vibrational spectrum of solid picene (C$_{22}$H$_{14}$) under pressure up to 8 GPa. First-principles calculations reproduce with a remarkable accuracy the pressure effects on both frequency and intensities of the phonon peaks experimentally observed . Through a detailed analysis of the phonon eigenvectors, We use the projection on molecular eigenmodes to unambiguously fit the experimental spectra, resolving complicated spectral structures, in a system with hundreds of phonon modes. With these projections, we can also quantify the loss of molecular character under pressure. Our results indicate that picene, despite a \sim 20 % compression of the unit cell, remains substantially a molecular solid up to 8 GPa, with phonon modes displaying a smooth and uniform hardening with pressure. The Grueneisen parameter of the 1380 cm^{-1} a_1 Raman peak ($\gamma_p=0.1$) is much lower than the effective value ($\gamma_d=0.8$) due to K doping. This is an indication that the phonon softening in K doped samples is mainly due to charge transfer and electron-phonon coupling.
    Physical review. B, Condensed matter 06/2013; 88(14). · 3.77 Impact Factor
  • Source
    Conference Paper: SPARC_LAB RECENT RESULTS
    [Show abstract] [Hide abstract]
    ABSTRACT: A new facility named SPARC_LAB has been recently launched at the INFN National Laboratories in Frascati, merging the potentialities of the former projects SPARC and PLASMONX. We describe in this paper the status and the recent results obtained at the SPARC_LAB facility.
    the 4th International Particle Accelerator Conference- IPAC 2013, Shanghai, China; 05/2013

Publication Stats

1k Citations
451.07 Total Impact Points

Institutions

  • 1989–2014
    • Sapienza University of Rome
      • Department of Physics
      Roma, Latium, Italy
  • 2010–2013
    • AREA Science Park
      Trst, Friuli Venezia Giulia, Italy
  • 2009–2013
    • Sincrotrone Trieste S.C.p.A.
      Trst, Friuli Venezia Giulia, Italy
  • 1994–2009
    • Université Paris-Sud 11
      • Laboratoire de Physique des Solides
      Paris, Ile-de-France, France