Wei Ding

Chinese Academy of Sciences, Peping, Beijing, China

Are you Wei Ding?

Claim your profile

Publications (30)197.01 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Fucokinase/L-fucose-1-P-guanylyltransferase (FKP) is a bifunctional enzyme which converts L-fucose to Fuc-1-P and thence to GDP-L-fucose through a salvage pathway. The molecular weights of full-length FKP (F-FKP) and C-terminally truncated FKP (C-FKP, residues 300–949) are 105.7 and 71.7 kDa, respectively. In this study, both recombinant F-FKP and C-FKP were expressed and purified. Size-exclusion chromatography experiments and analytical ultracentrifugation results showed that both F-FKP and C-FKP are trimers. Native F-FKP protein was crystallized by the vapour-diffusion method and the crystals belonged to space group P212121 and diffracted synchrotron X-rays to 3.7 Å resolution. The crystal unit-cell parameters are a = 91.36, b = 172.03, c = 358.86 Å, α = β = γ = 90.00°. The three-dimensional features of the F-FKP molecule were observed by cryo-EM (cryo-electron microscopy). The preliminary cryo-EM experiments showed the F-FKP molecules as two parallel disc-shaped objects stacking together. Combining all results together, it is assumed that there are six FKP molecules in one asymmetric unit, which corresponds to a calculated Matthews coefficient of 2.19 Å3 Da−1 with 43.83% solvent content. These preliminary crystallographic and cryo-EM microscopy analyses provide basic structural information on FKP.
    Acta Crystallographica Section F. 09/2014; 70(9).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tryptophan 2,3-dioxygenase (TDO), one of the two key enzymes in the kynurenine pathway, catalyzes the indole ring cleavage at the C2-C3 bond of L-tryptophan. This is a rate-limiting step in the regulation of tryptophan concentration in vivo, and is thus important in drug discovery for cancer and immune diseases. Here, we report the crystal structure of human tryptophan 2,3-dioxygenase (hTDO) without the heme cofactor to 2.90 Å resolution. The overall fold and the tertiary assembly of hTDO into a tetramer, as well as the active site architecture, are well conserved and similar to the structures of known orthologues. Kinetic and mutational studies confirmed that eight residues play critical roles in L-tryptophan oxidation. © Proteins 2014;. © 2014 Wiley Periodicals, Inc.
    Proteins Structure Function and Bioinformatics 07/2014; · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lysin LysGH15, which is derived from the staphylococcal phage GH15, demonstrates a wide lytic spectrum and strong lytic activity against methicillin-resistant Staphylococcus aureus (MRSA). Here, we find that the lytic activity of the full-length LysGH15 and its CHAP domain is dependent on calcium ions. To elucidate the molecular mechanism, the structures of three individual domains of LysGH15 were determined. Unexpectedly, the crystal structure of the LysGH15 CHAP domain reveals an "EF-hand-like" calcium-binding site near the Cys-His-Glu-Asn quartet active site groove. To date, the calcium-binding site in the LysGH15 CHAP domain is unique among homologous proteins, and it represents the first reported calcium-binding site in the CHAP family. More importantly, the calcium ion plays an important role as a switch that modulates the CHAP domain between the active and inactive states. Structure-guided mutagenesis of the amidase-2 domain reveals that both the zinc ion and E282 are required in catalysis and enable us to propose a catalytic mechanism. Nuclear magnetic resonance (NMR) spectroscopy and titration-guided mutagenesis identify residues (e.g., N404, Y406, G407, and T408) in the SH3b domain that are involved in the interactions with the substrate. To the best of our knowledge, our results constitute the first structural information on the biochemical features of a staphylococcal phage lysin and represent a pivotal step forward in understanding this type of lysin.
    PLoS Pathogens 05/2014; 10(5):e1004109. · 8.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ca(2+)-regulated photoproteins, which are responsible for light emission in a variety of marine coelenterates, are a highly valuable tool for measuring Ca(2+) inside living cells. All of the photoproteins are a single-chain polypeptide to which a 2-hydroperoxycoelenterazine molecule is tightly but noncovalently bound. Bioluminescence results from the oxidative decarboxylation of 2-hydroperoxycoelenterazine, generating protein-bound coelenteramide in an excited state. Here, the crystal structures of the Y138F obelin mutant before and after bioluminescence are reported at 1.72 and 1.30 Å resolution, respectively. The comparison of the spatial structures of the conformational states of Y138F obelin with those of wild-type obelin gives clear evidence that the substitution of Tyr by Phe does not affect the overall structure of both Y138F obelin and its product following Ca(2+) discharge compared with the corresponding conformational states of wild-type obelin. Despite the similarity of the overall structures and internal cavities of Y138F and wild-type obelins, there is a substantial difference: in the cavity of Y138F obelin a water molecule corresponding to W2 in wild-type obelin is not found. However, in Ca(2+)-discharged Y138F obelin this water molecule now appears in the same location. This finding, together with the observed much slower kinetics of Y138F obelin, clearly supports the hypothesis that the function of a water molecule in this location is to catalyze the 2-hydroperoxycoelenterazine decarboxylation reaction by protonation of a dioxetanone anion before its decomposition into the excited-state product. Although obelin differs from other hydromedusan Ca(2+)-regulated photoproteins in some of its properties, they are believed to share a common mechanism.
    Acta Crystallographica Section D Biological Crystallography 03/2014; 70(Pt 3):720-32. · 12.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nucleoside analogue reverse transcriptase inhibitor (NRTI), an integral component of highly active antiretroviral therapy (HAART), was widely used to inhibit HIV replication. Long-term exposure to NRTIs can result in mitochondrial toxicity which manifests as lipoatrophy, lactic acidosis, cardiomyopathy and myopathy, as well as polyneuropathy. But the cerebral neurotoxicity of NRTIs is still not well known partly due to the restriction of blood-brain barrier (BBB) and the complex microenvironment of the central nervous system (CNS). In this study, the Balb/c mice were administered 50 mg/kg stavudine (D4T), 100 mg/kg zidovudine (AZT), 50 mg/kg lamivudine (3TC) or 50 mg/kg didanosine (DDI) per day by intraperitoneal injection, five days per week for one or four months, and primary cortical neurons were cultured and exposed to 25 µM D4T, 50 µM AZT, 25 µM 3TC or 25 µM DDI for seven days. Then, single neuron was captured from mouse cerebral cortical tissues by laser capture microdissection. Mitochondrial DNA (mtDNA) levels of the primary cultured cortical neurons, and captured neurons or glial cells, and the tissues of brains and livers and muscles were analyzed by relative quantitative real-time PCR. The data showed that mtDNA did not lose in both NRTIs exposed cultured neurons and one month NRTIs treated mouse brains. In four months NRTIs treated mice, brain mtDNA levels remained unchanged even if the mtDNA levels of liver (except for 3TC) and muscle significantly decreased. However, mtDNA deletion was significantly higher in the captured neurons from mtDNA unchanged brains. These results suggest that long-term exposure to NRTIs can result in mtDNA deletion in mouse cortical neurons.
    PLoS ONE 01/2014; 9(1):e85637. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Asparaginyl endopeptidase (AEP) is an endo/lysosomal cysteine endopeptidase with a preference for an asparagine residue at the P1 site and plays an important role in the maturation of toll-like receptors 3/7/9. AEP is known to undergo autoproteolytic maturation at acidic pH for catalytic activation. Here, we describe crystal structures of the AEP proenzyme and the mature forms of AEP. Structural comparisons between AEP and caspases revealed similarities in the composition of key residues and in the catalytic mechanism. Mutagenesis studies identified N44, R46, H150, E189, C191, S217/S218 and D233 as residues that are essential for the cleavage of the peptide substrate. During maturation, autoproteolytic cleavage of AEP's cap domain opens up access to the active site on the core domain. Unexpectedly, an intermediate autoproteolytic maturation stage was discovered at approximately pH 4.5 in which the partially activated AEP could be reversed back to its proenzyme form. This unique feature was confirmed by the crystal structure of AEPpH4.5 (AEP was matured at pH 4.5 and crystallized at pH 8.5), in which the broken peptide bonds were religated and the structure was transformed back to its proenzyme form. Additionally, the AEP inhibitor cystatin C could be digested by the fully activated AEP, but could not be digested by activated cathepsins. Thus, we demonstrate for the first time that cystatins may regulate the activity of AEP through substrate competition for the active site.Cell Research advance online publication 10 January 2014; doi:10.1038/cr.2014.4.
    Cell Research 01/2014; · 10.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TRAF4 is a unique member of TRAF family, which is essential for innate immune response, nervous system and other systems. In addition to be an adaptor protein, TRAF4 was identified as a regulator protein in recent studies. We have determined the crystal structure of TRAF domain of TRAF4 (residues 292-466) at 2.60 Å resolution by X-ray crystallography method. The trimericly assembled TRAF4 resembles a mushroom shape, containing a super helical "stalk" which is made of three right-handed intertwined α helixes and a C-terminal "cap", which is divided at residue L302 as a boundary. Similar to other TRAFs, both intermolecular hydrophobic interaction in super helical "stalk" and hydrogen bonds in "cap" regions contribute directly to the formation of TRAF4 trimer. However, differing from other TRAFs, there is an additional flexible loop (residues 421-426), which contains a previously identified phosphorylated site S426 exposing on the surface. This S426 was reported to be phosphorylated by IKKα which is the pre-requisite for TRAF4-NOD2 complex formation and thus to inhibit NOD2-induced NF-κB activation. Therefore, the crystal structure of TRAF4-TRAF is valuable for understanding its molecular basis for its special function and provides structural information for further studies.
    Protein & Cell 08/2013; · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nicotinamide phosphoribosyl transferase (Nampt) is the rate-limiting enzyme for the salvage biosynthesis of nicotinamide adenine dinucleotide (NAD). Although elevated level of Nampt expression has been observed in various cancers, the involvement of Nampt promoter regulation was not well understood. We have identified a cluster of MEF2 recognition sites upstream of the functional hypoxia response elements (HREs) within the human Nampt promoter, and demonstrated that the two MEF2 sites at -1272 and -1200 were functional to upregulate the promoter activity by luciferase reporter assays. The Nampt promoter was able to be activated cooperatively following hypoxic stimulation by CoCl2 treatments with associated MEF2C overexpression. During the investigation on MEF2C regulation of endogenous Nampt expression in HeLa cells, the most significant enhancement of Nampt expression observed was by overexpression of MEF2C in combination with sodium butyrate exposure. By chromatin immunoprecipitation with a MEF2C anti-body, we found that the MEF2C indeed interacted with endogenous Nampt promoter. The requirement of HDAC inhibition for the MEF2C enhancement of Nampt transcription was verified by RNAi of HDAC. Our results were in support of reports indicating that MEF2 family transcription factors interacted with HDACs and regulated downstream gene expression at the epigenetic levels. Our study provided important evidence to demonstrate the sophisticated mechanism of endogenous Nampt promoter regulation, and therefore, will help to better understand the Nampt overexpression in cancer progression, especially in the context of MEF2C upregulation which frequently occurred in cancer development and drug resistance.
    Current pharmaceutical design 07/2013; · 4.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the fact that the survival of people infected with human immunodeficiency virus (HIV) has improved worldwide because of the increasingly powerful and highly active antiretroviral therapy, opportunistic infections (OIs) of the central nervous system (CNS) remain a serious burden. HIV-1 is capable of entering the CNS through infected peripheral monocytes, but its effect on OIs of CNS remains unclear. In this study, we investigated the characteristics of HIV-1 in acquired immunodeficiency syndrome (AIDS) patients with CNS OIs. A total of 24 patients with CNS OIs and 16 non-CNS OIs (control) cases were selected. These AIDS patients were infected with HIV-1 by paid blood donors in China. HIV-1 loads in plasma and cerebrospinal fluid (CSF) were detected using RT-PCR, and the C2-V5 region of HIV-1 envelope gene was amplified from viral quasispecies isolated from CSF using nested PCR. The CSF HIV-1 load of CNS OIs was higher than that of non-CNS OIs, but plasma HIV-1 load of CNS OIs was not higher than that of non-CNS OIs. The nucleotide sequence of C2-V5 region of the HIV-1 quasispecies isolated from the CSF of CNS OIs had a high diversity, and the HIV-1 quasispecies isolated from the CSF of CNS OIs revealed R5 tropism as 11/25 charge rule. These results suggest that high levels of divergent HIV-1 quasispecies in the CNS probably contribute to opportunistic infections.
    Journal of NeuroVirology 07/2013; · 2.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis mediated by p53 plays a pathological role in the progression of hepatosteatosis. It is noteworthy that p53 can promote the expression of DRAM, an inducer of autophagy-mediated apoptosis. However, the relationship between p53-mediated apoptosis and autophagy in hepatosteatosis remains elusive. This study aimed to examine how p53 orchestrates autophagy and apoptosis to affect hepatosteatosis. HepG2 cells were treated with oleic acid (OA) for 24 hours to induce hepatosteatosis. Mice were fed a high fat diet for 20 or 40 weeks to induce hepatosteatosis. OA induced a dose-dependent increase in steatosis severity and apoptosis. OA also induced autophagy, which was a critical inducer of apoptosis in mild steatosis induced by 400 μM OA but not in the more severe steatosis induced by 800 and 1200 μM OA. p53 inhibition by siRNA mostly blocked OA-induced apoptosis and autophagy. Moreover, OA-induced autophagy was damage-regulated autophagy modulator (DRAM)-dependent and primarily occurred in the mitochondria (mitophagy), where DRAM was localized. In severe steatosis induced by 1200 μM OA, apoptosis was mainly dependent on p53-induced expression of BAX, which was also localized to the mitochondria. Our in vivo study showed that p53 expression increased in both mild and severe hepatosteatosis. Increased DRAM expression and autophagy were identified in mild hepatosteatosis, whereas greater BAX expression was observed in severe hepatosteatosis. p53 may induce apoptosis via different mechanisms. DRAM-mediated mitophagy is a primary apoptotic inducer in mild hepatosteatosis, whereas p53-induced BAX expression mainly induces apoptosis in severe hepatosteatosis. This article is protected by copyright. All rights reserved.
    Liver international: official journal of the International Association for the Study of the Liver 06/2013; · 3.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is an aging-associated neurodegenerative disorder with progressive pathology involving the loss of midbrain dopaminergic neurons. Neurotrophic factors are promising for PD gene therapy; they are integrally involved in the development of the nigrostriatal system. Cerebral dopamine neurotrophic factor (CDNF) was recently discovered to be more selective and potent on preserving dopaminergic neurons than other known trophic factors. The present study examined the neuroprotective and functional restorative effects of CDNF overexpression in the striatum via recombinant adeno-associated virus type 2 (AAV2.CDNF) in 6-hydroxydopamine (6-OHDA) injected rats. Striatal delivery of AAV2.CDNF was able to recover 6-OHDA-induced behavior deficits and resulted in a significant restoration of tyrosine hydroxylase immunoreactive (TH-ir) neurons in the substantia nigra pars compacta (SNpc) and TH-ir fiber density in the striatum. PET analyses with [(11)C]-2β-carbomethoxy-3β-(4-fluorophenyl)-tropane ([(11)C]β-CFT) probes suggested functional recovery of dopaminergic (DA) neurons. Our results indicate that striatal administration of AAV2.CDNF was able to provide effective neuro-restoration in the 6-OHDA-lesioned nigrostriatal system and that it may be considered for future clinical applications in PD therapy.
    Experimental Neurology 06/2013; · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Severe fever with thrombocytopenia syndrome is an emerging infectious disease caused by a novel Bunyavirus, SFTSV. Lack of vaccines and inadequate therapeutic treatments have made the spread of the virus a global concern. Viral nucleocapsid protein (N) is essential for its transcription and replication. Here, we present the crystal structures of N from SFTSV and its homologs from Buenaventura (BUE) and Granada (GRA) viruses. The structures reveal that phleboviral N folds into a compact core domain and an extended N-terminal arm that mediates oligomerization, such as tetramer, pentamer and hexamer of N assemblies. Structural superimposition indicates that phleboviral N adopts a conserved architecture and uses a similar RNA encapsidation strategy as that of RVFV-N. The RNA binding cavity runs along the inner edge of the ring-like assembly. A triple mutant of SFTSV-N, R64D/K67D/K74D, almost lost its ability to bind RNA in vitro, is deficient in its ability to transcribe and replicate. Structural studies of the mutant reveal that both alterations in quaternary assembly and the charge distribution contribute to the loss of RNA binding. In the screening of inhibitors Suramin was identified to bind phleboviral N specifically. The complex crystal structure of SFTSV-N with Suramin was refined to 2.30 Å resolution. Suramin was found sitting in the putative RNA binding cavity of SFTSV-N. The inhibitory effect of Suramin on SFTSV replication was confirmed in Vero cells. Therefore, a common Suramin-based therapeutic approach targeting SFTSV-N and its homologs could be developed for containing phleboviral outbreaks.
    Journal of Virology 04/2013; · 5.08 Impact Factor
  • Cell Research 04/2013; · 10.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Negative-stranded RNA viruses cover their genome with nucleoprotein (N) to protect it from the human innate immune system. Abrogation of the function of N offers a unique opportunity to combat the spread of the viruses. Here, we describe a unique fold of N from Leanyer virus (LEAV, Orthobunyavirus genus, Bunyaviridae family) in complex with single-stranded RNA refined to 2.78 Å resolution as well as a 2.68 Å resolution structure of LEAV N-ssDNA complex. LEAV N is made up of an N- and a C-terminal lobe, with the RNA binding site located at the junction of these lobes. The LEAV N tetramer binds a 44-nucleotide-long single-stranded RNA chain. Hence, oligomerization of N is essential for encapsidation of the entire genome and is accomplished by using extensions at the N and C terminus. Molecular details of the oligomerization of N are illustrated in the structure where a circular ring-like tertiary assembly of a tetramer of LEAV N is observed tethering the RNA in a positively charged cavity running along the inner edge. Hydrogen bonds between N and the C2 hydroxyl group of ribose sugar explain the specificity of LEAV N for RNA over DNA. In addition, base-specific hydrogen bonds suggest that some regions of RNA bind N more tightly than others. Hinge movements around F20 and V125 assist in the reversal of capsidation during transcription and replication of the virus. Electron microscopic images of the ribonucleoprotein complexes of LEAV N reveal a filamentous assembly similar to those found in phleboviruses.
    Proceedings of the National Academy of Sciences 04/2013; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Simple and selective: Tyrosine phosphorylation is a pivotal post-translational modification which regulates the enzymatic activity, protein conformation, and protein-protein interactions. The highly efficient genetic incorporation of 3,5-difluorotyrosine (F2Y) in E. coli and the use of F2Y as a 19 F NMR probe for the tyrosine phosphorylation are reported.
    Angewandte Chemie International Edition 02/2013; · 11.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HAMLET is a complex of oleic acids and decalcified α-lactalbumin that was discovered to selectively kill tumor cells both in vitro and in vivo. Autophagy is an important cellular process involved in drug-induced cell death of glioma cells. We treated U87MG human glioma cells with HAMLET and found that the cell viability was significantly decreased and accompanied with the activation of autophagy. Interestingly, we observed an increase in p62/SQSTM1, an important substrate of autophagosome enzymes, at the protein level upon HAMLET treatment for short periods. To better understand the functionality of autophagy and p62/SQSTM1 in HAMLET-induced cell death, we modulated the level of autophagy or p62/SQSTM1 with biochemical or genetic methods. The results showed that inhibition of autophagy aggravated HAMLET-induced cell death, whereas activation of authophagy attenuated this process. Meanwhile, we found that overexpression of wild-type p62/SQSTM1 was able to activate caspase-8, and then promote HAMLET-induced apoptosis, whereas knockdown of p62/SQSTM1 manifested the opposite effect. We further demonstrated that the function of p62/SQSTM1 following HAMLET treatment required its C-terminus UBA domain. Our results indicated that in addition to being a marker of autophagy activation in HAMLET-treated glioma cells, p62/SQSTM1 could also function as an important mediator for the activation of caspase-8-dependent cell death.
    Cell Death & Disease 01/2013; 4:e550. · 6.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peroxisomes play an essential role in maintaining fatty acid homeostasis. Although mitochondria are also known to participate in the catabolism of fatty acids via β-oxidation, differences exist between the peroxisomal and mitochondrial β-oxidation. Only peroxisomes, but not mitochondrion, can shorten very long chain fatty acids. Here, we describe the crystal structure of a ternary complex of peroxisomal 2,4-dienoyl CoA reductases (pDCR) with hexadienoyl CoA and NADP, as a prototype for comparison with the mitochondrial 2,4-dienoyl CoA reductase (mDCR) to shed light on the differences between the enzymes from the two organelles at the molecular level. Unexpectedly, the structure of pDCR refined to 1.84 Å resolution reveals the absence of the tyrosine-serine pair seen in the active site of mDCR, which together with a lysine and an asparagine have been deemed a hallmark of the SDR family of enzymes. Instead, aspartate hydrogen-bonded to the Cα hydroxyl via a water molecule seems to perturb the water molecule for protonation of the substrate. Our studies provide the first structural evidence for participation of water in the DCR-catalyzed reactions. Biochemical studies and structural analysis suggest that pDCRs can catalyze the shortening of six-carbon-long substrates in vitro. However, the K(m) values of pDCR for short chain acyl CoAs are at least 6-fold higher than those for substrates with 10 or more aliphatic carbons. Unlike mDCR, hinge movements permit pDCR to process very long chain polyunsaturated fatty acids.
    Journal of Biological Chemistry 06/2012; 287(34):28956-65. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A subset of tumour necrosis factor receptor (TNFR) superfamily members contain death domains in their cytoplasmic tails. Death receptor 6 (DR6) is one such member and can trigger apoptosis upon the binding of a ligand by its cysteine-rich domains (CRDs). The crystal structure of the ectodomain (amino acids 1-348) of human death receptor 6 (DR6) encompassing the CRD region was phased using the anomalous signal from S atoms. In order to explore the feasibility of S-SAD phasing at longer wavelengths (beyond 2.5 Å), a comparative study was performed on data collected at wavelengths of 2.0 and 2.7 Å. In spite of sub-optimal experimental conditions, the 2.7 Å wavelength used for data collection showed potential for S-SAD phasing. The results showed that the R(ano)/R(p.i.m.) ratio is a good indicator for monitoring the anomalous data quality when the anomalous signal is relatively strong, while d''/sig(d'') calculated by SHELXC is a more sensitive and stable indicator applicable for grading a wider range of anomalous data qualities. The use of the `parameter-space screening method' for S-SAD phasing resulted in solutions for data sets that failed during manual attempts. SAXS measurements on the ectodomain suggested that a dimer defines the minimal physical unit of an unliganded DR6 molecule in solution.
    Acta Crystallographica Section D Biological Crystallography 05/2012; 68(Pt 5):521-30. · 12.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: HIV-associated neurocognitive disorders (HAND), characterized by cognitive, motor, and behavioral abnormalities, are common among people living with HIV and AIDS. In combined antiretroviral therapy era in Western countries, nearly 40% of HIV-infected patients continue to suffer from HAND, mainly with mild or asymptomatic cognitive impairment. However, the prevalence and the clinical features of HAND in China are still not well known. In this study, a multi-center cross-sectional study was performed to determine the prevalence and clinical features of HAND in 134 HIV-1 infected patients in China. The International HIV Dementia Scale and a neuropsychological test battery were administered for screening and diagnosis HAND. Subjective complaints, CD4 count and viral loads in both blood plasma and cerebrospinal fluid were correlated with diagnosis of HAND. The results showed that the prevalence of HAND was approximately 37% in these patients. CD4 counts at time of sampling were significant lower in the HAND group than in the non-HAND group. But the distribution of the HAND severity did not differ by CD4 count or viral load. The presence of HAND was associated with cognitive and behavior disorder complaints (4.9- and 4.1-fold higher than those without HAND, respectively). The present data suggest that CD4 count and viral load cannot predict the severity of HAND, although the prevalence of HAND is similar to previous report in these patients. Cognitive and behavioral disorder is major complaint rather than cognitive and motor impairment. A larger prospective study is needed to obtain better estimates of HAND in China.
    Journal of NeuroVirology 03/2012; 18(2):120-6. · 2.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acupuncture practice is based on the theoretical, historical and philosophical principles, which are part of Chinese medicine. Traditional acupuncture practitioners assess their patients' conditions using Chinese medicine diagnostic techniques, which determine clinical care and treatment. Little is known about differences in the perceptions of research evidence among practitioners in the European Union (EU) and China, given the diversity of acupuncture practice. This study explored differences between practitioners of traditional acupuncture regarding perceived need for research evidence and prioritisation for future clinical trials, based on their practice within the EU and China. A convenience sample of acupuncturists in the EU (contacted by their professional organisation) and China (from geographically dispersed hospitals) were invited to participate in a survey, which was conducted during 2010/2011. Data collected included: practitioners' demographic details, country of training, practice setting, acupuncture techniques, perceived adverse event reporting, diagnostic methods, conditions commonly treated, conditions perceived as needing more evidence and practitioner perceptions of conditions which could demonstrate benefit if investigated in clinical trials. From 1126 survey responses, 1020 (559 EU, 461 China) could be included in the analysis for direct comparison. A response rate for the EU could not be calculated but for China was 98%. Pain was the most frequently reported commonly treated condition by EU acupuncturists and neurological conditions (mainly stroke) for Chinese practitioners. The top reported priorities for research were obstetrics/gynaecological conditions in the EU and neurological problems in China. The survey identified differences in practice and training between acupuncturists in China and the EU and between EU member states. These differences may inform prioritisation of health conditions for future trials. Innovative research methods are recommended to incorporate the complexity and plurality of acupuncture practice and theory. Creation of collaborative networks is crucial in overcoming these differences to facilitate international, multi-centre clinical trials.
    Journal of ethnopharmacology 02/2012; 140(3):604-13. · 2.32 Impact Factor

Publication Stats

94 Citations
197.01 Total Impact Points

Institutions

  • 2011–2014
    • Chinese Academy of Sciences
      • Institute of Biophysics
      Peping, Beijing, China
  • 2010–2013
    • Capital Medical University
      • • School of Basic Medical Sciences
      • • Department of Biochemistry and Molecular Biology
      Peping, Beijing, China
  • 2012
    • Northeast Institute of Geography and Agroecology
      • Institute of Biophysics
      Beijing, Beijing Shi, China
  • 2009
    • Peking University
      • Neuroscience Research Institute
      Beijing, Beijing Shi, China
    • Capital University of Integrative Medicine
      China, Maine, United States