Dieter Suter

Technische Universität Dortmund, Dortmund, North Rhine-Westphalia, Germany

Are you Dieter Suter?

Claim your profile

Publications (128)388.58 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-equilibrium dynamics of many-body systems is important in many branches of science, such as condensed matter, quantum chemistry, and ultracold atoms. Here we report the experimental observation of a phase transition of the quantum coherent dynamics of a 3D many-spin system with dipolar interactions, and determine its critical exponents. Using nuclear magnetic resonance (NMR) on a solid-state system of spins at room-temperature, we quench the interaction Hamiltonian to drive the evolution of the system. The resulting dynamics of the system coherence can be localized or extended, depending on the quench strength. Applying a finite-time scaling analysis to the observed time-evolution of the number of correlated spins, we extract the critical exponents v = s = 0.42 around the phase transition separating a localized from a delocalized dynamical regime. These results show clearly that such nuclear-spin based quantum simulations can effectively model the non-equilibrium dynamics of complex many-body systems, such as 3D spin-networks with dipolar interactions.
    09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Topological orders are exotic phases of matter existing in strongly correlated quantum systems, which are beyond the usual symmetry description and cannot be distinguished by local order parameters. Here we report an experimental quantum simulation of the Wen-plaquette spin model with different topological orders in a nuclear magnetic resonance system, and observe the adiabatic transition between two $Z_2$ topological orders through a spin-polarized phase by measuring the nonlocal closed-string (Wilson loop) operator. Moreover, we also measure the entanglement properties of the topological orders. This work confirms the adiabatic method for preparing topologically ordered states and provides an experimental tool for further studies of complex quantum systems.
    Physical review letters. 08/2014; 113(8).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Universal quantum computation requires the implementation of arbitrary control operations on the quantum register. In most cases, this is achieved by external control fields acting selectively on each qubit to drive single-qubit operations. In combination with a drift Hamiltonian containing interactions between the qubits, this allows the implementation of any required gate operation. Here, we demonstrate an alternative scheme that does not require local control for all qubits: we implement one- and two-qubit gate operations on a set of target qubits indirectly, through a combination of gates on directly controlled actuator qubits with a drift Hamiltonian that couples actuator and target qubits. Experiments are performed on nuclear spins, using radio-frequency pulses as gate operations and magnetic-dipole couplings for the drift Hamiltonian.
    05/2014;
  • Mirjam Holbach, Jörg Lambert, Dieter Suter
    [Show abstract] [Hide abstract]
    ABSTRACT: The selective excitation of metabolite signals in vivo requires the use of specially adapted pulse techniques, in particular when the signals are weak and the resonances overlap with those of unwanted molecules. Several pulse sequences have been proposed for this spectral editing task. However, their performance is strongly degraded by unavoidable experimental imperfections. Here, we show that optimal control theory can be used to generate pulses and sequences that perform almost ideally over a range of rf field strengths and frequency offsets that can be chosen according to the specifics of the spectrometer or scanner being used. We demonstrate this scheme by applying it to lactate editing. In addition to the robust excitation, we also have designed the pulses to minimize the signal of unwanted molecular species.
    Journal of Magnetic Resonance 03/2014; 243C:8-16. · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Implementing precise operations on quantum systems is one of the biggest challenges for building quantum devices in a noisy environment. Dynamical decoupling attenuates the destructive effect of the environmental noise, but so far, it has been used primarily in the context of quantum memories. Here, we experimentally demonstrate a general scheme for combining dynamical decoupling with quantum logical gate operations using the example of an electron-spin qubit of a single nitrogen-vacancy center in diamond. We achieve process fidelities >98% for gate times that are 2 orders of magnitude longer than the unprotected dephasing time T2.
    Physical Review Letters 02/2014; 112(5):050502. · 7.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrate how planar microresonators (PMRs) can be utilized to investigate the angular dependent magnetic resonance response of single magnetic nanostructures. In contrast to alternative detection schemes like electrical or optical detection, the PMR approach provides a classical means of investigating the high frequency dynamics of single magnetic entities, enabling the use of well-established analysis methods of ferromagnetic resonance (FMR) spectroscopy. To demonstrate the performance of the PMR-based FMR setup for angular dependent measurements, we investigate the microwave excited magnons in a single Co stripe of 5 × 1 × 0.02 μm3 and compare the results to micromagnetic simulations. The evolution of excited magnons under rotation of one individual stripe with respect to a static magnetic field is investigated. Besides quasi uniform excitations, we observe magneto-static as well as localized excitations. We find a strong influence of inhomogeneous dynamic and static demagnetizing fields for all modes.
    Journal of Applied Physics 01/2014; 116(3):033913-033913-6. · 2.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Optically-pumped (69)Ga NMR (OPNMR) and optically-detected measurements of polarized photoluminescence (Hanle curves) show a characteristic feature at the light hole-to-conduction band transition in a GaAs/AlxGa1-xAs multiple quantum well sample. OPNMR data are often depicted as a "profile" of the OPNMR integrated signal intensity plotted versus optical pumping photon energy. What is notable is the inversion of the sign of the measured (69)Ga OPNMR signals when optically pumping this light hole-to-conduction band energy in OPNMR profiles at multiple external magnetic fields (B0=4.7T and 3T) for both σ(+) and σ(-) irradiation. Measurements of Hanle curves at B0=0.5T of the same sample exhibit similar phase inversion behavior of the Hanle curves at the photon energy for light hole excitation. The zero-field value of the light-hole state in the quantum well can be predicted for the quantum well structure using the positions of each of these signal-inversion features, and the spin splitting term in the equation for the transition energy yields consistent values at 3 magnetic fields for the excitonic g-factor (g(ex)). This study demonstrates the application of OPNMR and optical measurements of the photoluminescence to detect the light hole transition in semiconductors.
    Journal of Magnetic Resonance. 01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quantum information processing often uses systems with dipolar interactions. We use a nuclear spin-based quantum simulator, to study the spreading of information in such a dipolar-coupled system and how perturbations to the dipolar couplings limit the spreading, leading to localization. In [Phys. Rev. Lett. 104, 230403 (2010)], we found that the system reaches a dynamic equilibrium size, which decreases with the square of the perturbation strength. Here, we study the impact of a disordered Hamiltonian with dipolar 1/r^3 interactions. We show that the expansion of the coherence length of the cluster size of the spins becomes frozen in the presence of large disorder, reminiscent of Anderson localization of non-interacting waves in a disordered potential.
    Annalen der Physik 10/2013; 525:833. · 1.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cryogenic probes have significantly increased the sensitivity of NMR. Here, we present a compact EPR receiver design capable of cryogenic operation. Compared to room temperature operation, it reduces the noise by a factor of ≈2.5. We discuss in detail the design and analyze the resulting noise performance. At low microwave power, the input noise density closely follows the emission of a cooled 50Ω resistor over the whole measurement range from 20K up to room temperature. To minimize the influence of the microwave source noise, we use high microwave efficiency (≈1.1-1.7mTW(-1/2)) planar microresonators. Their efficient conversion of microwave power to magnetic field permits EPR measurements with very low power levels, typically ranging from a few μW down to fractions of nW.
    Journal of Magnetic Resonance 10/2013; 237C:79-84. · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alterations of the blood flow are associated with various cardiovascular diseases. Precise knowledge of the velocity distribution is therefore important for understanding these diseases and predicting the effect of different medical intervention schemes. The goal of this work is to estimate the precision with which the velocity field can be measured and predicted by studying two simple model geometries with NMR micro imaging and computational fluid dynamics. For these initial experiments, we use water as an ideal test medium. The phantoms consist of tubes simulating a straight blood vessel and a step between two tubes of different diameters, which can be seen as a minimal model of the situation behind a stenosis. For both models, we compare the experimental data with the numerical prediction, using the experimental boundary conditions. For the simpler model, we also compare the data to the analytical solution. As an additional validation, we determine the divergence of the velocity field and verify that it vanishes within the experimental uncertainties. We discuss the resulting precision of the simulation and the outlook for extending this approach to the analysis of specific cases of arteriovascular problems.
    Journal of Magnetic Resonance 07/2013; 235C:42-49. · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report a high fidelity optical memory in which dynamical decoupling is used to extend the storage time. This is demonstrated in a rare-earth doped crystal in which optical coherences were transferred to nuclear spin coherences and then protected against environmental noise by dynamical decoupling, leading to storage times of up to 4.2 ms. An interference experiment shows that relative phases of input pulses are preserved through the whole storage and retrieval process with a visibility ≈1, demonstrating the usefulness of dynamical decoupling for extending the storage time of quantum memories. We also show that dynamical decoupling sequences insensitive to initial spin coherence increase retrieval efficiency.
    Physical Review Letters 07/2013; 111(2):020503. · 7.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Precise characterization of a hyperfine interaction is a prerequisite for high fidelity manipulations of electron and nuclear spins belonging to a hybrid qubit register in diamond. Here, we demonstrate a novel scheme for determining a hyperfine interaction, using single-quantum and zero-quantum Ramsey fringes, by applying it to the system of a Nitrogen Vacancy (NV) center and a $^{13}$C nuclear spin in the 1$^{\mathrm{st}}$ shell. The zero-quantum Ramsey fringe, analogous to the quantum beat in a $\Lambda$-type level structure, particularly enhances the measurement precision for non-secular hyperfine terms. Precisions less than 0.5 MHz in the estimation of all the components in the hyperfine tensor were achieved. Furthermore, for the first time we experimentally determined the principal axes of the hyperfine interaction in the system. Beyond the 1$^{\mathrm{st}}$ shell, this method can be universally applied to other $^{13}$C nuclear spins interacting with the NV center.
    06/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Measuring local temperature with a spatial resolution on the order of a few nanometers has a wide range of applications in the semiconductor industry and in material and life sciences. For example, probing temperature on the nanoscale with high precision can potentially be used to detect small, local temperature changes like those caused by chemical reactions or biochemical processes. However, precise nanoscale temperature measurements have not been realized so far owing to the lack of adequate probes. Here we experimentally demonstrate a novel nanoscale temperature sensing technique based on optically detected electron spin resonance in single atomic defects in diamonds. These diamond sensor sizes range from a micrometer down to a few tens of nanometers. We achieve a temperature noise floor of 5mK/√Hz for single defects in bulk sensors. Using doped nanodiamonds as sensors the temperature noise floor is 130mK/√Hz and accuracies down to 1mK for nanocrystal sizes and therefore length scales of a few tens of nanometers. This combination of precision and position resolution, combined with the outstanding sensor photostability should allow measure of the heat produced by chemical interactions involving a few or single molecules even in heterogeneous environments like cells.
    Nano Letters 05/2013; · 13.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrate theoretically and experimentally the possibility to achieve the strong coupling regime at room temperature with a microwave electronic oscillator coupled with an ensemble of electron spins. The coupled system shows bistable behaviour, with a broad hysteresis and sharp transitions. The coupling strength and the hysteresis width can be adjusted through the number of spins in the ensemble, the temperature, and the microwave field strength.
    Journal of Magnetic Resonance 04/2013; 231C:133-140. · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Active protection of quantum states is an essential prerequisite for the implementation of quantum computing. Dynamical decoupling (DD) is a promising approach that applies sequences of control pulses to the system in order to reduce the adverse effect of system-environment interactions. Since every hardware device has finite precision, the errors of the DD control pulses can themselves destroy the stored information rather than protect it. We experimentally compare the performance of different DD sequences in the presence of an environment that was chosen such that all relevant DD sequences can equally suppress its effect on the system. Under these conditions, the remaining decay of the qubits under DD allows us to compare very precisely the robustness of the different DD sequences with respect to imperfections of the control pulses.
    Physical Review A 04/2013; 87:042309. · 3.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pulsed excitation of broad spectra requires very high field strengths if monochromatic pulses are used. If the corresponding high power is not available or not desirable, the pulses can be replaced by suitable low-power pulses that distribute the power over a wider bandwidth. As a simple case, we use microwave pulses with a linear frequency chirp. We use these pulses to excite spectra of single NV-centers in a Ramsey experiment. Compared to the conventional Ramsey experiment, our approach increases the bandwidth by at least an order of magnitude. Compared to the conventional ODMR experiment, the chirped Ramsey experiment does not suffer from power broadening and increases the resolution by at least an order of magnitude. As an additional benefit, the chirped Ramsey spectrum contains not only `allowed' single quantum transitions, but also `forbidden' zero- and double quantum transitions, which can be distinguished from the single quantum transitions by phase-shifting the readout pulse with respect to the excitation pulse or by variation of the external magnetic field strength.
    New Journal of Physics 01/2013; 15(3). · 4.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quantum adiabatic passages can be greatly accelerated by a suitable control field, called a counter-diabatic field, which varies during the scan through resonance. Here, we implement this technique on the electron spin of a single nitrogen-vacancy center in diamond. We demonstrate two versions of this scheme. The first follows closely the procedure originally proposed by Demirplak and Rice (J. Phys. Chem. A 107, 9937 (2003)). In the second scheme, we use a control field whose amplitude is constant, but its phase varies with time. This version, which we call the rapid-scan approach, allows an even faster passage through resonance and therefore makes it applicable also for systems with shorter decoherence times.
    Physical Review Letters 12/2012; 110(24). · 7.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the biggest challenges for implementing quantum devices is the requirement to perform accurate quantum gates. The destructive effects of interactions with the environment present some of the most difficult obstacles that must be overcome for precise quantum control. In this work we implement a proof of principle experiment of quantum gates protected against a fluctuating environment using dynamical decoupling techniques. We show that decoherence can be reduced during the application of quantum gates. High fidelity quantum gates can be achieved even if the gate time exceeds the decoherence time by one order of magnitude.
    Physical Review A 11/2012; 86:050301(R). · 3.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quantum memories provide intermediate storage of quantum information until it is needed for the next step of a quantum algorithm or a quantum communication process. Relevant figures of merit are therefore the fidelity with which the information can be written and retrieved, the storage time, and also the speed of the read-write process. Here, we present experimental data on a quantum memory consisting of a single $^{13}$C nuclear spin that is strongly coupled to the electron spin of a nitrogen-vacancy (NV) center in diamond. The strong hyperfine interaction of the nearest-neighbor carbon results in transfer times of 300 ns between the register qubit and the memory qubit, with an overall fidelity of 88 % for the write - storage - read cycle. The observed storage times of 3.3 ms appear to be limited by the T$_1$ relaxation of the electron spin. We discuss a possible scheme that may extend the storage time beyond this limit.
    Physical Review A 10/2012; 87(1). · 3.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quantum computers, which process information encoded in quantum mechanical systems, hold the potential to solve some of the hardest computational problems. A substantial obstacle for the further development of quantum computers is the fact that the lifetime of quantum information is usually too short to allow practical computation. A promising method for increasing the lifetime, known as dynamical decoupling (DD), consists of applying a periodic series of inversion pulses to the quantum bits. In the present review, we give an overview of this technique and compare different pulse sequences proposed earlier. We show that pulse imperfections, which are always present in experimental implementations, limit the performance of DD. The loss of coherence due to the accumulation of pulse errors can even exceed the perturbation from the environment. This effect can be largely eliminated by a judicious design of pulses and sequences. The corresponding sequences are largely immune to pulse imperfections and provide an increase of the coherence time of the system by several orders of magnitude.
    Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences 10/2012; 370(1976):4748-69. · 2.89 Impact Factor

Publication Stats

1k Citations
388.58 Total Impact Points

Institutions

  • 1997–2014
    • Technische Universität Dortmund
      • • Faculty of Physics
      • • Chair of Experimental Physics II
      Dortmund, North Rhine-Westphalia, Germany
    • University of East Anglia
      Norwich, England, United Kingdom
  • 2008–2010
    • University of Science and Technology of China
      • Department of Modern Physics
      Hefei, Anhui Sheng, China