Takayuki Matsumoto

Hoshi University, Shinagawa, Tōkyō, Japan

Are you Takayuki Matsumoto?

Claim your profile

Publications (100)290.01 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The dramatic worldwide increase in the prevalence of diabetes has generated an attempt by the scientific community to identify strategies for its treatment and prevention. Vascular dysfunction is a hallmark of diabetes and frequently leads to the development of atherosclerosis, coronary disease-derived myocardial infarction, stroke, peripheral arterial disease and diabetic “triopathy” (retinopathy, nephropathy and neuropathy). These vascular complications, developing in an increasingly younger cohort of diabetic patients, contribute to morbidity and mortality. Despite the development of new anti-diabetic or anti-hyperglycemic drugs; however, vascular complications remain to be a problem. This warrants a need for new therapeutic strategies to tackle diabetic vasculopathy. There is a growing body of evidence showing that peptide-binding G protein-coupled receptors (peptide-biding GPCRs) play an important role in the pathophysiology of vascular dysfunction during diabetes. Thus, in this review, we discuss some of the peptide-binding GPCRs involved in the regulation of vascular function that have potential to be a therapeutic target in the treatment of diabetic vasculopathy.This article is protected by copyright. All rights reserved.
    Acta Physiologica 03/2014; · 4.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The rising epidemic of diabetes worldwide is of significant concern. Although the ultimate objective is to prevent the development and find a cure for the disease, prevention and treatment of diabetic complications is very important. Vascular complications in diabetes, or diabetic vasculopathy, include macro- and microvascular dysfunction and represent the principal cause of morbidity and mortality in diabetic patients. Endothelial dysfunction plays a pivotal role in the development and progression of diabetic vasculopathy. Endothelin-1 (ET-1), an endothelial cell-derived peptide, is a potent vasoconstrictor with mitogenic, pro-oxidative and pro-inflammatory properties that are particularly relevant to the pathophysiology of diabetic vasculopathy. Overproduction of ET-1 is reported in patients and animal models of diabetes and the functional effects of ET-1 and its receptors are also greatly altered in diabetic conditions. The current therapeutic approaches in diabetes include glucose lowering, sensitization to insulin, reduction of fatty acids and vasculoprotective therapies. However, whether and how these therapeutic approaches affect the ET-1 system remain poorly understood. Accordingly, in the present review, we will focus on experimental and clinical evidence that indicates a role for ET-1 in diabetic vasculopathy and on the effects of current therapeutic approaches in diabetes on the vascular ET-1 system.
    Life sciences 01/2014; · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes is characterized by the development of endothelial dysfunction, which affects both nitric oxide (NO)-mediated relaxation and endothelium-derived contracting factors, associated with vascular oxidative stress. There is a growing body of evidence suggesting that polyphenols have several beneficial effects, such as antioxidant and anti-inflammatory activities. This study investigated whether short-term treatment with polyphenols (chlorogenic acid (CA), morin (MO), resveratrol (RV)) can improve endothelial dysfunction related to diabetes. Aorta reactivity was determined in organ chambers, and we measured NO production and thromboxane B2 (TXB2; a metabolite of TXA2) from aortas in response to acetylcholine (ACh). Streptozotocin (STZ)-induced diabetic mice (16 weeks) were injected with solvent (ethanol, 10% v/v; intraperitoneally (i.p.)), CA (0.03 mmol/kg/d), MO (0.03 mmol/kg/d), and RV (0.03 mmol/kg/d) for 5 d. The ACh-induced endothelium-dependent relaxation was markedly reduced in rings of STZ-induced diabetic mice compared to controls. The treatment with polyphenols (significantly: MO, tendency: CA and RV) for only 5 d improved the NO components of relaxation, but did not normalize ACh-stimulated NO production. However, polyphenol treatment suppressed the ACh-stimulated level of TXB2 in aortas from STZ-induced diabetic mice. Thus, treatment with polyphenols caused basal NO production and a prompt improvement of the endothelial function in diabetic mice, and this may involve the normalization of TXA2 levels, not NO production, under ACh stimulation.
    Biological & Pharmaceutical Bulletin 01/2014; 37(6):1056-61. · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Serotonin (5-hydroxytryptamine: 5-HT) plays important roles in the cardiovascular system; however, the relationship between 5-HT-induced vasocontraction and the arterial 5-HT system including metabolism and signal transduction, in the presence of chronic type 2 diabetes (T2D) remains unclear. Therefore, we investigated 5-HT-induced contraction and associated mechanisms in carotid arteries from chronic T2D Goto-Kakizaki (GK) rats. Contractions in response to 5-HT were examined in carotid arteries from GK rats (42-46 weeks old). To investigate the response mechanisms of arterial smooth muscle, we constructed concentration-response curves for TCB2 (5-HT2A-receptor agonist), BW723C86 (5-HT2B-receptor agonist), and 5-HT in the presence of various inhibitors using endothelium-denuded preparations. Carotid arterial expressions of monoamine oxidase-A (MAO-A), serotonin transporter (SERT), and 5-HT2A were detected by immunoblotting. 5-HT-induced contraction was increased in carotid arteries from GK compared to control Wistar rats in both endothelium-intact and -denuded preparations. In denuded preparations, we found that: 1) TCB2-induced contraction was increased in GK rat arteries (vs. Wistar); 2) MAO-A inhibitor did not affect 5-HT-induced contraction, whereas SERT inhibitor augmented such contractions in both groups; and 3) differences in 5-HT-induced contractions were abolished by p38 MAPK, PI3K, and Rho kinase inhibitors. Carotid arterial expressions of MAO-A, SERT, and 5-HT2A remained unchanged in the groups. The results suggest that 5-HT-induced contraction is augmented in T2D GK rat carotid arteries. This augmentation is due to smooth muscle activation partly mediated by p38 MAPK, PI3K, and Rho kinases, and may also be partly due to arterial SERT activity.
    Pharmacological Research. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective We investigated the relationships among protein tyrosine phosphatase 1B (PTP1B), angiotensin II (Ang II), and insulin signaling in the presence of endothelial dysfunction in type 2 diabetic Goto-Kakizaki (GK) rat aortas. Methods and results Aortas isolated from GK or control Wistar rats were examined in the presence or absence of Ang II with or without a selective antagonist of the Ang II type 1 (AT1) receptor or a PTP1B inhibitor to evaluate vascular functional and molecular mechanisms, such as insulin-induced relaxation, nitric oxide (NO) production, phosphorylation of insulin receptor substrate (IRS)-1, endothelial NO synthase (eNOS), and phosphorylation, and the subcellular localization of PTP1B. GK aortas exhibited reductions of: 1) insulin-induced relaxation, 2) NO production, 3) Ser1177-p-eNOS, and 4) Tyr612-p-IRS-1. Pre-incubation with a PTP1B inhibitor normalized these reductions. In Wistar aortas, the four above-mentioned parameters were reduced by Ang II, but were completely inhibited by co-treatment with the PTP1B inhibitor. The membrane expression of PTP1B was greater in GK than in Wistar aortas, and it was increased by Ang II in Wistar rats. The membrane PTP1B expression in the presence of insulin + Ang II was reduced by the PTP1B inhibitor or AT1-receptor antagonist. Conclusions These results suggest that the membrane PTP1B suppressed insulin-mediated aortic relaxation, and this was due to the Ang II-AT1-receptor signaling pathway. The inhibition of PTP1B warrants further investigation as a potential therapeutic target for endothelial dysfunction in type 2 diabetes.
    Atherosclerosis 01/2014; · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes is associated with endothelial dysfunction and platelet activation, both of which may contribute to increased cardiovascular risk. The purpose of this study was to characterize circulating platelets in diabetes and clarify their effects on endothelial function. Male Wistar rats were injected with streptozotocin (STZ) to induce diabetes. Each experiment was performed by incubating carotid arterial rings with platelets (1.65×107 cells/mL; 30 min) isolated from STZ or control rats. Thereafter, the vascular function was characterized in isolated carotid arterial rings in organ bath chambers, and each expression and activation of enzymes involved in nitric oxide and oxidative stress levels were analyzed. Endothelium-dependent relaxation induced by acetylcholine was significantly attenuated in carotid arteries treated with platelets isolated from STZ rats. Similarly, treatment with platelets isolated from STZ rats significantly reduced ACh-induced Akt/endothelial NO synthase signaling/NO production and enhanced TXB2 (metabolite of TXA2), while CD61 (platelet marker) and CD62P (activated platelet marker) were increased in carotid arteries treated with platelets isolated from STZ rats. Furthermore, the platelets isolated from STZ rats decreased total eNOS protein and eNOS dimerization, and increased oxidative stress. These data provide direct evidence that circulating platelets isolated from diabetic rats cause dysfunction of the endothelium by decreasing NO production (via Akt/endothelial NO synthase signaling pathway) and increasing TXA2. Moreover, activated platelets disrupt the carotid artery by increasing oxidative stress.
    PLoS ONE 01/2014; 9(7):e102310. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pre-existing diabetes increases the risk of maternal and fetal complications during pregnancy and this may be due to underlying maternal vascular dysfunction and impaired blood supply to the uteroplacental unit. Endothelial dysfunction and reduced vascular smooth muscle responsiveness to nitric oxide (NO) are common vascular impairments in type 2 diabetes (T2D). We hypothesized that uterine arteries from diabetic rats would have reduced vascular smooth muscle sensitivity to NO as compared to non-diabetic rats due to impairment in the NO/soluble guanylate cyclase (sGC)/guanosine 3':5' cyclic monophosphate (cGMP) signaling pathway. Uterine arteries from pregnant Goto-Kakizaki (GK, model of T2D) and Wistar (non-diabetic) rats were studied in a wire myograph. GK non-pregnant uterine arteries had reduced responses to acetylcholine (ACh) and sodium nitroprusside (SNP) but increased responses to propylamine propylamine NONOate and greater sensitivity to sildenafil compared to Wistar non-pregnant arteries. In late pregnancy, Wistar rats had reduced uterine vascular smooth muscle responsiveness to SNP but GK rats failed to show this adaptation and had reduced expression of sGC as compared to the non-pregnant state. GK rats had a smaller litter size (13.9 ± 0.48 vs. 9.8 ± 0.75, p<0.05) and a greater number of resorptions compared to Wistar controls (0.8 ± 0.76% vs. 19.9 ± 6.06%, p<0.05). These results suggest that uterine arteries from rats with T2D show reduced sensitivity of uterine vascular smooth muscle sGC to NO. During pregnancy, the GK uterine vascular smooth muscle fails to show relaxation responses similar to those of arteries from non-diabetic rats.
    AJP Heart and Circulatory Physiology 12/2013; · 4.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is a growing body of evidence suggesting that epigallocatechin gallate (EGCG), a major catechin isolated from green tea, has several beneficial effects, such as anti-oxidant and anti-inflammatory activities. However, whether treatment with EGCG can suppress the endothelin-1 (ET-1)-induced contraction in carotid arteries from type 2 diabetic rats is unknown, especially at the chronic stage of the disease. We hypothesized that long-term treatment with EGCG would attenuate ET-1-induced contractions in type 2 diabetic arteries. Otsuka Long-Evans Tokushima fatty (OLETF) rats (43weeks old) were treated with EGCG (200mg/kg/day for 2months, p.o.), and the responsiveness to ET-1, phenylephrine (PE), acetylcholine (ACh) and sodium nitroprusside (SNP) was measured in common carotid artery (CA) from EGCG-treated and -untreated OLETF rats and control Long-Evans Tokushima Otsuka (LETO) rats. In OLETF rats, EGCG attenuated responsiveness to ET-1 in CA compared to untreated groups. However, EGCG did not alter PE-induced contractions in CA from OLETF rats. In endothelium-denuded arteries, EGCG did not affect ET-1-induced contractions in either the OLETF or LETO group. Acetylcholine-induced relaxation was increased by EGCG treatment in CA from the OLETF group. The expressions of ET receptors, endothelial nitric oxide synthase, superoxide dismutases, and gp91(phox) [an NAD(P)H oxidase component] in CA were not altered by EGCG treatment in either group. Our data suggest that, within the timescale investigated here, EGCG attenuates ET-1-induced contractions in CA from type 2 diabetic rats, and one of the mechanisms may involve normalizing endothelial function.
    Life sciences 11/2013; · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Low-grade systemic inflammation is a common manifestation of hypertension; however, the exact mechanisms that initiate this pathophysiological response, thereby contributing to further increases in blood pressure, are not well understood. Aberrant vascular inflammation and reactivity via activation of the innate immune system may be the first step in the pathogenesis of hypertension. One of the functions of the innate immune system is to recognize and respond to danger. Danger signals can arise from not only pathogenic stimuli but also endogenous molecules released following cell injury and/or death [damage-associated molecular patterns (DAMPs)]. In the short-term, activation of the innate immune system is beneficial in the vasculature by providing cytoprotective mechanisms and facilitating tissue repair following injury or infection. However, sustained or excessive immune system activation, such as in autoimmune diseases, may be deleterious and can lead to maladaptive, irreversible changes to vascular structure and function. An initial source of DAMPs that enter the circulation to activate the innate immune system could arise from modest elevations in peripheral vascular resistance. These stimuli could subsequently lead to ischemic- or pressure-induced events aggravating further cell injury and/or death, providing more DAMPs for innate immune system activation. This review will address and critically evaluate the current literature on the role of the innate immune system in hypertension pathogenesis. The role of Toll-like receptor (TLR) activation on somatic cells of the vasculature in response to the release of DAMPs and the consequences of this activation on inflammation, vasoreactivity, and vascular remodeling will be specifically discussed.
    AJP Heart and Circulatory Physiology 10/2013; · 4.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: We previously reported that σ1-receptor (σ1R) expression in the thoracic aorta decreased after pressure overload (PO) induced by abdominal aortic banding in ovariectomized (OVX) rats. Here, we asked whether stimulation of σ1R with the selective agonist SA4503 elicits functional recovery of aortic vasodilation and constriction following vascular injury in OVX rats with PO. Methods and Results: SA4503 (0.3-1.0mg/kg) and NE-100 (a σ1R antagonist, 1.0mg/kg) were administered orally for 4 weeks (once daily) to OVX-PO rats. Vascular functions of isolated descending aorta were measured following phenylephrine (PE)- or endothelin-1 (ET-1)-induced vasoconstriction and acetylcholine (ACh)- or clonidine-induced vasodilation. SA4503 administration rescued PO-induced σ1R decreases in aortic smooth muscle and endothelial cells. SA4503 treatment also rescued PO-induced impairments in ACh- and clonidine-induced vasodilation without affecting PE- and ET-1-induced vasoconstriction. Ameliorated ACh- and clonidine-induced vasodilation was closely associated with increased Akt activity and in turn endothelial nitric oxide synthase (eNOS) phosphorylation. The SA4503-mediated improvement of vasodilation was blocked by NE-100 treatment. Conclusions: σ1R is downregulated following PO-induced endothelial injury in OVX rats. The selective σ1R agonist SA4503 rescues impaired endothelium-dependent vasodilation in the aorta from OVX-PO rats through σ1R stimulation, enhancing eNOS-cGMP signaling in vascular endothelial cells. These observations encourage development of novel therapeutics targeting σ1R to prevent vascular endothelial injury in vascular diseases.
    Circulation Journal 08/2013; · 3.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dinucleotide uridine adenosine tetraphosphate (Up4A), which has both purine and pyrimidine moieties, was reported as a novel endothelium-derived contracting factor. Recently, growing evidence has suggested that Up4A plays an important role in regulation of the cardiovascular function. We previously demonstrated that Up4A-induced vasoconstrictions are altered in arteries from DOCA-salt hypertensive rats. We have assessed responses to Up4A shown by renal arteries from type 2 diabetic Goto-Kakizaki (GK) rats (42-46 weeks old) and identified the molecular mechanisms involved. Concentration-dependent contractions to Up4A were greater in renal arterial rings from the GK than age-matched control Wistar group. In both groups, the inhibition of nitric oxide synthase (with N (G)-nitro-L-arginine) increased the response to Up4A, whereas the inhibition of cyclooxygenase (COX) (with indomethacin) decreased the response. Specific inhibitors of COX-1 (valeroyl salicylate) and COX-2 (NS398), a thromboxane (TX) receptor (TP) antagonist (SQ29548), and P2 receptor antagonist (suramin) also decreased the response to Up4A. Protein expressions of COXs in renal arteries were greater in the GK than Wistar group. The production of TXB2 (a metabolite of TXA2) by Up4A did not differ between these groups. Concentration-dependent contractions to U46619, an agonist of the TP receptor, were greater in renal arteries from the GK than Wistar group. The expression of P2X1 and P2Y2 receptors did not differ between these groups. These results suggest that enhancement of the Up4A-induced contraction in renal arteries from GK rats may be attributable to the increased activation of COXs/TP receptor signaling.
    Pflügers Archiv - European Journal of Physiology 07/2013; · 4.87 Impact Factor
  • Kathryn M Spitler, Takayuki Matsumoto, R Clinton Webb
    [Show abstract] [Hide abstract]
    ABSTRACT: A contributing factor to increased peripheral resistance seen during hypertension is an increased production of endothelium-derived contractile factors (EDCFs). The main EDCFs are vasoconstrictor prostanoids, metabolites of arachidonic acid (AA) produced by calcium-dependent cytosolic PLA2 (cPLA2) following phosphorylation (at Ser(505)) mediated by extracellular signal-regulated kinase (ERK1/2) and cyclooxygenase (COX) activations. Although endoplasmic reticulum (ER) stress has been shown to contribute to pathophysiological alterations in cardiovascular diseases, the relationship between ER stress and EDCF-mediated responses remains unclear. We tested the hypothesis that ER stress plays a role in EDCF-mediated responses via activation of the cPLA2/COX pathway in the aorta of the spontaneously hypertensive rat (SHR). Male SHR and Wistar Kyoto rats (WKY) were treated with ER stress inhibitor, tauroursodeoxycholic acid or 4-phenlybutyric acid (TUDCA or PBA, respectively, 100 mg/kg/day, i.p.) or PBS (control, 300 µl/day, i.p.) for one week. There was a decrease in systolic blood pressure (mmHg) in SHR treated with TUDCA or PBA compared to control SHR (176±3; 181±5, respectively vs. 200±2). In the SHR, treatment with TUDCA or PBA normalized aortic (vs. control SHR) 1) Contractions to acetylchoine (ACh), AA and tert-butyl hydroperoxide, 2) ACh-stimulated releases of prostanoids (thromboxane A2, PGF2α and prostacyclin), 3) expression of COX-1, 4) phosphorylation of cPLA2 and ERK1/2, and 5) production of hydrogen peroxide. Our findings demonstrate a novel interplay between ER stress and EDCF-mediated responses in the aorta of the SHR. Moreover, ER stress inhibition normalizes such responses by suppressing the cPLA2/COX pathway.
    AJP Heart and Circulatory Physiology 05/2013; · 4.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Emerging evidence suggests that in addition to being the 'power houses' of our cells, mitochondria facilitate effector responses of the immune system. Cell death and injury result in the release of mtDNA (mitochondrial DNA) that acts via TLR9 (Toll-like receptor 9), a pattern recognition receptor of the immune system which detects bacterial and viral DNA but not vertebrate DNA. The ability of mtDNA to activate TLR9 in a similar fashion to bacterial DNA stems from evolutionarily conserved similarities between bacteria and mitochondria. mtDNA may be the trigger of systemic inflammation in pathologies associated with abnormal cell death. PE (pre-eclampsia) is a hypertensive disorder of pregnancy with devastating maternal and fetal consequences. The aetiology of PE is unknown and removal of the placenta is the only effective cure. Placentas from women with PE show exaggerated necrosis of trophoblast cells, and circulating levels of mtDNA are higher in pregnancies with PE. Accordingly, we propose the hypothesis that exaggerated necrosis of trophoblast cells results in the release of mtDNA, which stimulates TLR9 to mount an immune response and to produce systemic maternal inflammation and vascular dysfunction that lead to hypertension and IUGR (intra-uterine growth restriction). The proposed hypothesis implicates mtDNA in the development of PE via activation of the immune system and may have important preventative and therapeutic implications, because circulating mtDNA may be potential markers of early detection of PE, and anti-TLR9 treatments may be promising in the management of the disease.
    Clinical Science 10/2012; 123(7):429-35. · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endothelin (ET)-1 is a likely candidate for a key role in diabetic vascular complications. In the present study, we hypothesized that treatment with pravastatin (an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase) would normalize the ET-1-induced contraction in aortas isolated from type 2 diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats. Contractile responses were examined by measuring isometric force in endothelium-denuded aortic helical strips from four groups: Long-Evans Tokushima Otsuka (LETO; genetic control), OLETF (type 2 diabetic), pravastatin-treated LETO, and pravastatin-treated OLETF rats. Both immunoblot analysis and immunoprecipitation assays were used to examine Src, protein phosphatase (PP)2A, kinase suppressor of Ras (KSR)1, and ERK signaling pathway protein levels and activities. In endothelium-denuded aortas isolated from OLETF rats at the chronic stage of diabetes (56-60 wk) (vs. those from age-matched LETO rats), we found the following: 1) ET-1-induced contraction was enhanced, 2) ERK1/2 phosphorylation was increased, 3) phosphorylations of KSR1 and PP2A were reduced (i.e., enhancement of the kinase active state), 4) ERK1/2-KSR1 complexes were increased, and 5) Src tyrosine kinase activity was diminished. Endothelium-denuded aortas isolated from OLETF rats treated with pravastatin (10 mg/kg po, daily for 4 wk) exhibited normalized ET-1-induced contractions and suppressed ET-1-stimulated ERK phosphorylation, with the associated phosphorylated KSR1 and phosphorylated PP2A levels being increased toward normal levels. These results suggest that in type 2 diabetic rats, pravastatin normalizes ET-1-induced contraction in aortic smooth muscle via a suppression of PP2A/KSR1/ERK activities after an enhancement of Src kinase activity.
    AJP Heart and Circulatory Physiology 08/2012; 303(7):H893-902. · 4.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular problems are a major cause of morbidity and mortality, mainly due to coronary artery disease and atherosclerosis, in type 2 diabetes mellitus. However, female gender is a protective factor in the development of, for example, atherosclerosis and hypertension. One of the female hormones, 17β-estradiol (E2), is known to protect against the cardiovascular injury resulting from endothelial dysfunction, but the mechanism by which it does so remains unknown. Our hypothesis was that E2-mediated activation of Akt and mitogen-activated protein kinase (MAPK), and the subsequent endothelial NO synthase (eNOS) phosphorylation, might protect the aorta in diabetic mellitus. The experimental type 2 diabetic model we employed to test that hypothesis (female mice given streptozotocin and nicotinamide) is here termed fDM. In fDM aortas, we examined the E2-induced relaxation response and the associated protein activities. In control (age-matched, nondiabetic) aortas, E2 induced a vascular relaxation response that was mediated via Akt/eNOS and mitogen-activated/ERK-activating kinase (MEK)/eNOS pathways. In fDM aortas (vs. control aortas), (a) the E2-induced relaxation was enhanced, (b) the mediation of the response was different (via Akt/eNOS and p38 MAPK/eNOS pathways), and (c) E2 stimulation increased p38 MAPK and eNOS phosphorylations, decreased MEK phosphorylation, but did not alter estrogen receptor activity. We infer that at least in fDM aortas, E2 has beneficial effects (enhanced vascular relaxation and protection) that are mediated through Akt activation and (compensating for reduced MEK activation) p38 MAPK activation, leading to enhanced eNOS phosphorylation.
    Pflügers Archiv - European Journal of Physiology 06/2012; 464(2):205-15. · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In type 2 diabetes, impaired insulin-induced Akt/endothelial nitric oxide synthase (eNOS) signaling may decrease the vascular relaxation response. Previously, we reported that this response was negatively regulated by G protein-coupled receptor kinase 2 (GRK2). In this study, we investigated whether/how in aortas from ob/ob mice (a model of type 2 diabetes) GRK2 and β-arrestin 2 might regulate insulin-induced signaling. Endothelium-dependent relaxation was measured in aortic strips. GRK2, β-arrestin 2, and Akt/eNOS signaling pathway proteins and activities were mainly assayed by Western blotting. In ob/ob (vs. control [Lean]) aortas: 1) insulin-induced relaxation was reduced, and this deficit was prevented by GRK2 inhibitor, anti-GRK2 antibody, and an siRNA specifically targeting GRK2. The Lean aorta relaxation response was reduced to the ob/ob level by pretreatment with an siRNA targeting β-arrestin 2. 2) Insulin-stimulated Akt and eNOS phosphorylations were decreased. 3) GRK2 expression in membranes was elevated, and, upon insulin stimulation, this expression was further increased, but β-arrestin 2 was decreased. In ob/ob aortic membranes under insulin stimulation, the phosphorylations of Akt and eNOS were augmented by GRK2 inhibitor. In mouse aorta, GRK2 may be, upon translocation, a key negative regulator of insulin responsiveness and an important regulator of the β-arrestin 2/Akt/eNOS signaling, which is implicated in diabetic endothelial dysfunction.
    Diabetes 06/2012; 61(8):1978-85. · 7.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In type 2 diabetes, although Akt/endothelial NO synthase (eNOS) activation is known to be negatively regulated by G protein-coupled receptor kinase 2 (GRK2), it is unclear whether the GRK2 inhibitor would have therapeutic effects. Here we examined the hypotensive effect of the GRK2 inhibitor and its efficacy agonist both vascular (aortic) endothelial dysfunction (focusing especially on the Akt/eNOS pathway) and glucose intolerance in two type 2 diabetic models (ob/ob mice and nicotinamide+streptozotocin-induced diabetic mice). Mice were treated with a single injection of the GRK2 inhibitor or vehicle, and the therapeutic effects were compared by examining vascular function and by Western blotting. The GRK2 inhibitor lowered blood pressure in both diabetic models but not in their age-matched controls. The GRK2 inhibitor significantly improved clonidine-induced relaxation only in diabetic (ob/ob and DM) mice, with accompanying attenuations of GRK2 activity and translocation to the plasma membrane. These protective effects of the GRK2 inhibitor may be attributable to the augmented Akt/eNOS pathway activation (as evidenced by increases in Akt phosphorylation at Ser(473) and at Thr(308), and eNOS phosphorylation at Ser(1177)) and to the prevention of the GRK2 translocation and promotion of β-arrestin 2 translocation to the membrane under clonidine stimulation. Moreover, the GRK2 inhibitor significantly improved the glucose intolerance seen in the ob/ob mice. Our work provides the first evidence that in diabetes, the GRK2 inhibitor ameliorates vascular endothelial dysfunction via the Akt/eNOS pathway by inhibiting GRK2 activity and enhancing β-arrestin 2 translocation under clonidine stimulation, thereby contributing to a blood pressure-lowering effect. We propose that the GRK2 inhibitor may be a promising therapeutic agent for cardiovascular complications in type 2 diabetes.
    Endocrinology 05/2012; 153(7):2985-96. · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During pregnancy, reduced vascular responses to constrictors contribute to decreased uterine and total vascular resistance. Thromboxane A(2) (TxA(2)) is a potent vasoconstrictor that exerts its actions via diverse signaling pathways, and its biosynthesis increases in preeclampsia. In this study, we hypothesized that maternal vascular responses to TxA(2) will be attenuated via Rho kinase, PKC, p38 MAPK, and ERK1/2 signaling pathways. Isolated ring segments of uterine and small mesenteric arteries from late pregnant (19-21 days) and virgin rats were suspended in a myograph, and isometric force was measured. Pregnancy did not affect uterine and mesenteric artery responses to the TxA(2) analog U-46619 (10(-9)-10(-5) M), but transduction signals associated with these contractions were different between pregnant and nonpregnant rats. Inhibition of Rho kinase (10(-6) M Y-27632) reduced sensitivity to U-46619 in virgin uterine vessels but did not inhibit these contractions in pregnant uterine arteries and had no effect on mesenteric vessels. Treatment of arterial segments with a PKC inhibitor (10(-6) M bisindolylmaleimide I) reduced U-46619-induced contractions in virgin uterine and mesenteric arteries and in pregnant mesenteric arteries. Pregnant uterine arteries, however, were unresponsive to PKC inhibition. Inhibition of ERK1/2 (10(-5) M PD-98059) and p38 MAPK (10(-5) M SB-203580) reduced U46619-induced contractions in nonpregnant vessels and in pregnant uterine and mesenteric vessels. These data suggest that normal pregnancy does not affect uterine and mesenteric contractile responses to TxA(2) but reduces the contribution of Rho kinase and PKC signaling pathways to these contractions in the uterine vasculature. In contrast, the role of ERK1/2 and p38 MAPK in U-46619-induced uterine contractions remains unchanged with pregnancy. TxA(2)-associated transduction signals and its regulators might present potential targets for the development of new treatments for preeclampsia and other pregnancy-associated vascular diseases.
    AJP Heart and Circulatory Physiology 04/2012; 302(12):H2477-88. · 4.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present sutdy, we have examined the relationship between the CaMKII (Ca(2+)/calmodulin-dependent protein kinase II) pathway and endothelial dysfunction in aortas from GK (Goto-Kakizaki) Type 2 diabetic rats. The ACh (acetylcholine)-induced relaxation and NO production were each attenuated in diabetic aortas (compared with those from age-matched control rats). ACh-stimulated Ser(1177)-eNOS (endothelial NO synthase) phosphorylation was significantly decreased in diabetic aortas (compared with their controls). ACh markedly increased the CaMKII phosphorylation level within endothelial cells only in control aortas (as assessed by immunohistochemistry and Western blotting). ACh-stimulated Thr(286)-CaMKII phosphorylation within endothelial cells was significantly decreased in diabetic aortas (compared with their controls). The ACh-induced relaxations, NO production, eNOS phosphorylation, and CaMKII phosphorylation were inhibited by KN93 and/or by lavendustin C (inhibitors of CaMKII) in control aortas, but not in diabetic ones. Pre-incubation of aortic strips with a PP (protein phosphatase)-1 inhibitor, PPI2 (protein phosphatase inhibitor 2), or with a PP2A inhibitor, CA (cantharidic acid), corrected the above abnormalities in diabetic aortas. The expression of PP2A type A subunit was increased in diabetic aortas. The ACh-stimulated Thr(320)-phosphorylation level of PP1α was lower in diabetic aortas than in their controls, but the total PP1α protein level was not different. These results suggest that the aortic relaxation responses, NO production, and eNOS activity mediated by CaMKII phosphorylation are decreased in this Type 2 diabetic model, and that these impairments of CaMKII signalling may be, at least in part, due to enhancements of PP1α activity and PP2A expression.
    Clinical Science 04/2012; 123(6):375-86. · 4.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prostaglandin E(2) (PGE(2)), an important and ubiquitously present vasoactive eicosanoid, may either constrict or dilate systemic vascular beds. However, little is known about the vascular contractile responsiveness to and signaling pathways for PGE(2) at the chronic stage of type 2 diabetes. We hypothesized that PGE(2)-induced arterial contraction is augmented in type 2 diabetic Goto-Kakizaki (GK) rats via the protein kinase Cδ (PKCδ) pathway. Here, we investigated the vasoconstrictor effects of PGE(2) and of sulprostone (EP1-/EP3-receptor agonist) in rings cut from superior mesenteric arteries isolated from GK rats (37-44 weeks old). In arteries from GK rats (vs. those from age-matched Wistar rats), examined in the presence of a nitric oxide synthase inhibitor: 1) the PGE(2)- and sulprostone-induced vasocontractions (which were not blocked by the selective EP1 receptor antagonist sc19220) were enhanced, and these enhancements were suppressed by rottlerin (selective PKCδ inhibitor) but not by Gö6976 (selective PKCα/β inhibitor); 2) the sulprostone-stimulated phosphorylation of PKCδ (at Thr(505)), which yields an active form, was increased and 3) sulprostone-stimulated caldesmon phosphorylations, which are related to isometric force generation in smooth muscle, were increased. The protein expression of EP3 receptor in superior mesenteric arteries was similar between the two groups of rats. Our data suggest that the diabetes-related enhancement of EP3 receptor-mediated vasocontraction results from activation of the PKCδ pathway. Alterations in EP3 receptor-mediated vasocontraction may be important factors in the pathophysiological influences over arterial tone that are present in diabetic states.
    Pflügers Archiv - European Journal of Physiology 04/2012; 463(4):593-602. · 4.87 Impact Factor