Xue Duan

Beijing University of Chemical Technology, Peping, Beijing, China

Are you Xue Duan?

Claim your profile

Publications (310)1320.86 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Layered double hydroxides (LDHs) are a family of high-profile layer materials with tunable metal species and interlayer spacing, and herein the LDHs are first investigated as bifunctional electrocatalysts. It is found that trinary LDH containing nickel, cobalt, and iron (NiCoFe-LDH) shows a reasonable bifunctional performance, while exploiting a preoxidation treatment can significantly enhance both oxygen reduction reaction and oxygen evolution reaction activity. This phenomenon is attributed to the partial conversion of Co2+ to Co3+ state in the preoxidation step, which stimulates the charge transfer to the catalyst surface. The practical application of the optimized material is demonstrated with a small potential hysteresis (800 mV for a reversible current density of 20 mA cm−2) as well as a high stability, exceeding the performances of noble metal catalysts (commercial Pt/C and Ir/C). The combination of the electrochemical metrics and the facile and cost-effective synthesis endows the trinary LDH as a promising bifunctional catalyst for a variety of applications, such as next-generation regenerative fuel cells or metal–air batteries.
    Advanced Energy Materials 04/2015; DOI:10.1002/aenm.201500245 · 14.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intelligent photoresponsive materials have shown broad applications in antiflake, coating, biomarker, information storage, and optical devices. This article describes the design and fabrication of a photoresponsive switch via a two-step procedure: (i) spiropyran (SP) as a chromophore was encapsulated within a block copolymer (poly(tert-butyl acrylate-co-ethyl acrylate-co-methacrylic acid), PTBEM) to produce SP@PTBEM micelle; (ii) an organic−inorganic ultrathin film (UTF) was prepared by layer-by-layer (LBL) self-assembly of the negatively charged SP@PTBEM micelle and positively charged MgAl-layered double hydroxide (LDH) nanoplatelets (denoted as (SP@PTBEM/LDHs) n UTF; n represents the bilayer number). Fluorescence spectroscopy and scanning electron microscopy (SEM) indicate a uniform and ordered layered structure with stepwise growth. The resulting (SP@PTBEM/LDHs) n UTF serves as an intelligent photoresponsive switch based on the structural transformation between SP and merocyanine (MC), which is triggered by alternate irradiation of UV/visible light. In addition, the UTF exhibits a high reversibility and photostability, which can be potentially used in photochromic materials and devices.
    The Journal of Physical Chemistry C 03/2015; 119:7428-7439. DOI:10.1021/acs.jpcc.5b00753 · 4.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A sophisticated hierarchical nanoarray consisting of a conducting polymer (polypyrrole, PPy) core and layered double hydroxide (LDH) shell are synthesized via a facile two-step electrosynthesis method. The obtained PPy@LDH-based flexible all-solid-state supercapacitor meets the requirements of both high energy/power output and long-term endurance, which can be potentially used in highly-efficient and stable energy storage. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Small 03/2015; DOI:10.1002/smll.201403421 · 7.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Development of electrode materials with well-defined architectures is a fruitful and profitable approach for achieving highly-efficient energy storage systems. A molecular-scale hybrid system is presented based on the self-assembly of CoNi-layered double hydroxide (CoNi-LDH) monolayers and the conducting polymer (poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate), denoted as PEDOT:PSS) into an alternating-layer superlattice. Owing to the homogeneous interface and intimate interaction, the resulting CoNi-LDH/PEDOT:PSS hybrid materials possess a simultaneous enhancement in ion and charge-carrier transport and exhibit improved capacitive properties with a high specific capacitance (960 F g–1 at 2 A g–1) and excellent rate capability (83.7% retention at 30 A g–1). In addition, an in-plane supercapacitor device with an interdigital design is fabricated based on a CoNi-LDH/PEDOT:PSS thin film, delivering a significantly enhanced energy and power output (an energy density of 46.1 Wh kg–1 at 11.9 kW kg–1). Its application in miniaturized devices is further demonstrated by successfully driving a photodetector. These characteristics demonstrate that the molecular-scale assembly of LDH monolayers and the conducting polymer is promising for energy storage and conversion applications in miniaturized electronics.
    Advanced Functional Materials 03/2015; 25(18). DOI:10.1002/adfm.201500408 · 10.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Layered double hydroxides (LDHs) are a class of anion clays consisting of brucite-like host layers and interlayer anions, which have attracted increasing interest in the fields of catalysis/adsorption. By virtue of the versatility in composition, morphology, and architecture of LDH materials, as well as their unique structural properties (intercalation, topological transformation, and self-assembly with other functional materials), LDHs display great potential in the design and fabrication of nanomaterials applied in photocatalysis, heterogeneous catalysis, and adsorption/separation processes. Taking advantage of the structural merits and various control synthesis strategies of LDHs, the active center structure (e.g., crystal facets, defects, geometric and electronic states, etc.) and macro–nano morphology can be facilely manipulated for specific catalytic/adsorbent processes with largely enhanced performances. In this review, the latest advancements in the design and preparation of LDH-based functional nanomaterials for sustainable development in catalysis and adsorption are summarized.
    Small 02/2015; 46(7). DOI:10.1002/smll.201401464 · 7.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TiO2@CoAl-layered double hydroxide (LDH) core–shell nanospheres are fabricated via hydrothermal synthesis of TiO2 hollow nanospheres followed by in situ growth of CoAl-LDH shell, which exhibit an extraordinarily high photocatalytic activity toward oxygen evolution from water oxidation. The O2 generation rates of 2.34 and 2.24 mmol h−1 g−1 are achieved under full sunlight (>200 nm) and visible light (>420 nm), respectively, which are among the highest photocatalytic activities for oxygen production to date. The reason is attributed to the desirable incorporation of visible- light-active LDH shell with UV light-responsive TiO2 core for promoted solar energy utilization. Most importantly, the combined experimental results and computational simulations reveal that the strong donor–acceptor coupling and suitable band matching between TiO2 core and LDH shell facilitate the separation of photoinduced electron-hole pairs, accounting for the highly efficient photocatalytic performance. Therefore, this work provides a facile and cost-effective strategy for the design and fabrication of hierarchical semiconductor materials, which can be applied as photocatalyst toward water splitting and solar energy conversion.
    Advanced Functional Materials 02/2015; 25(15). DOI:10.1002/adfm.201404496 · 10.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The selective hydrogenation of benzene to cyclohexene is of high value for the chemical industry owing to its inexpensive feedstock, atom economy, and operational simplicity. A tunable catalytic behavior towards the selective hydrogenation of benzene was obtained over Cu-decorated Ru catalysts supported on a layered double hydroxide (denoted as RuxCuy/MgAl-LDH), reaching a maximum cyclohexene yield of 44.0 % over Ru1.0Cu0.5/MgAl-LDH at 150 °C and 5.0 MPa without employment of any additives. CO-TPD (TPD=temperature-programmed desorption) and in situ CO-FTIR techniques demonstrated that Cu atoms preferentially deposit on the surface of low-coordinated Ru atoms in RuxCuy/MgAl-LDH catalysts, resulting in a low adsorption energy of cyclohexene on the modified sites as revealed by DFT calculations. This work not only gives an understanding of the correlation between the surface exposure of Ru active sites and the resulting selectivity, but also provides a green and additive-free catalytic process for the selective hydrogenation of benzene.
    ChemCatChem 01/2015; 7(5). DOI:10.1002/cctc.201402895 · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Au nanoparticles sensitized ZnO nanorod@nanoplatelet (NR@NP) core-shell arrays have been synthesized via a facile hydrothermal method followed by a further modification using Au nanoparticles. The resulting Au-ZnO NR@NP nanoarray exhibits promising behavior in photoelectrochemical (PEC) water splitting, giving rise to a largely enhanced photocurrent density, photoconversion efficiency as well as incident-photon-to-current-conversion efficiency (IPCE), much superior to those of pristine ZnO nanorods arrays and ZnO NR@NP. This is attributed to the coordination of ZnO core-shell hierarchical nanostructure and the surface-plasmon-resonance effect of Au nanoparticles, which facilitates the exposure of active sites and utilization of visible light. Density functional theory (DFT) calculations further confirm that the photogenerated electrons of ZnO transfer to Au, which suppresses the recombination of electron–hole pairs. Therefore, this work provides a facile and cost-effective strategy for the construction of hierarchical metal/semiconductor nanoarrays, which can be potentially used in the field of energy storage and conversion.
    Nano Energy 01/2015; 12. DOI:10.1016/j.nanoen.2014.12.037 · 10.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Production of higher alcohols from the catalytic conversion of synthesis gas (CO + H2) is one of the most promising approaches for the utilization of nonoil resources, in which bimetallic catalysts based on Cu and Fischer–Tropsch (FT) reaction active elements (e.g., Co, Fe, Ni) are efficient and cost-effective candidates. Herein, we demonstrate the fabrication of core−shell Cu@(CuCo-alloy) nanoparticles (NPs) embedded on a Al2O3 matrix via an in situ growth of CuCoAl-LDHs nanoplatelets on aluminum substrates followed by a calcination-reduction process, which serve as an efficient catalyst toward CO hydrogenation to produce higher alcohols. The composition, particle size and shell thickness can be tuned by changing the Cu/Co molar ratio in the LDHs precursors, and the best catalytic behavior was obtained over the Cu/Co (1/2) catalyst with a CO conversion of 21.5% and a selectivity (C6+ slate 1-alcohols) of 48.9%, which is superior to the traditional modified FT catalysts. The XPS, in situ FTIR spectroscopy and HAADF-STEM reveal that the unique electronic and geometric interaction between Cu and Co in the Cu@(CuCo-alloy) NPs give contribution to the significantly enhanced catalytic performances. In addition, the 3D hierachical structure of Cu@(CuCo-alloy)/Al2O3 catalyst facilitates the mass diffusion/transportation as well as prevents the hotspot formation, accounting for its stability and recycleability. The Cu@(CuCo-alloy)/Al2O3 catalyst with significantly improved catalytic behavior can be potentially used in CO hydrogenation to produce higher alcohols.
    Green Chemistry 12/2014; 17(3). DOI:10.1039/C4GC01633E · 6.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A targeted photosensitizer used in photodynamic therapy (PDT) was fabricated by incorporation of zinc phthalocyanine (ZnPc) and folic acid (FA) into polyvinylpyrrolidone (PVP) micelle, which exhibits excellent anticancer performance both in vitro studies and in vivo tests.
    Chemical Communications 10/2014; 50(95). DOI:10.1039/C4CC07628A · 6.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review surveys recent advances in the applications of layered double hydroxides (LDHs) in heterogeneous catalysis. By virtue of the flexible tunability and uniform distribution of metal cations in the brucite-like layers and the facile exchangeability of intercalated anions, LDHs-both as directly prepared or after thermal treatment and/or reduction-have found many applications as stable and recyclable heterogeneous catalysts or catalyst supports for a variety of reactions with high industrial and academic importance. A major challenge in this rapidly growing field is to simultaneously improve the activity, selectivity and stability of these LDH-based materials by developing ways of tailoring the electronic structure of the catalysts and supports. Therefore, this Review article is mainly focused on the most recent developments in smart design strategies for LDH materials and the potential catalytic applications of the resulting materials.
    Chemical Society Reviews 07/2014; 43(20). DOI:10.1039/c4cs00160e · 30.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Co3O4@NiAl-layered double hydroxide (LDH) core/shell nanowire arrays have been fabricated by in situ growth of LDH nanosheets shell on the surface of Co3O4 core. The resulting Co3O4@NiAl-LDH material exhibits promising supercatacitance performance including largely enhanced specific capacitance and rate capability compared with pristine Co3O4 nanowire arrays. This can be attributed to the sufficient exposure of electroactive species and the enhanced charge transportation process resulting from the hierarchical structure.
    Nano Energy 07/2014; 7. DOI:10.1016/j.nanoen.2014.05.002 · 10.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inorganic nanomaterials including gold nanoparticles, mesoporous silica nanoparticles, graphene, magnetic nanoparticles, quantum dots and layered double hydroxides have become one of the most active research fields in biochemistry, biotechnology and biomedicine. Benefiting from the facile synthesis/modification, intrinsically physicochemical properties and good biocompatibility, inorganic nanomaterials have shown great potential in bioimaging, targeted drug delivery and cancer therapies. This Feature Article summarizes recent progress on various inorganic nanocarriers, including the background, synthesis, modification, cytotoxicity, physicochemical properties as well as their applications in biomedicine.
    Chemical Communications 06/2014; 50(91). DOI:10.1039/c4cc03118k · 6.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fluorescence sensing of nucleotides is an important topic for biosensor and fluorescence materials. In this paper, a cheap UV light absorber, 2-phenylbenzimidazole-5-sulfonate (PBS) was immobilized into the interlayers of Zn2Al layered double hydroxides (LDHs) by co-intercalating with 1-decane sulfonate (DES) anions. The dependence of fluorescence on the molar concentration (x%) of PBS was investigated, and the PBS(15%)–DES/LDH composite exhibited optimal violet luminescence at 402 nm, compared with that of the PBS solution with luminescence at 342 nm. The PBS(15%)–DES/LDH composite thin films were fabricated by solvent evaporation method on quartz substrate. Moreover, the composite thin film exhibited remarkable PBS luminescence transformation (violet to UV light) for nucleotide triphosphates (ATP, GTP, CTP and UTP), compared with their diphosphate and monophosphate counterparts (ADP, AMP and etc.), which makes it a prospective sensor for the nucleotide molecules at the simulated physiological conditions. The origin of the luminescence enhancement was investigated and attributed to the extensive hydrogen bonding interaction between the intercalated PBS and nucleotides.
    06/2014; 2(26). DOI:10.1039/C4TC00755G
  • [Show abstract] [Hide abstract]
    ABSTRACT: Water as a green solvent has attracted considerable research interests in many important organic reactions. Development of effective and recyclable water-tolerant catalysts, especially heterogeneous catalysts, is the main challenge for the catalytic reactions in aqueous medium. Layered double hydroxides (LDHs) are a class of anion clays consisting of brucite-like host layers and interlayer anions, with versatility in composition, morphology and architecture. By virtue of the hydrophilicity of the hydroxyl-riched host layers as well as the 2D confined region of interlayer gallery, LDHs display great potential as supports to immobilize catalytically-active species so as to obtain water-compatible heterogeneous catalysts, in which catalytic sites can be preferentially orientated, highly dispersed, and firmly stabilized to afford excellent catalytic performance and recyclability in aqueous medium. Moreover, LDHs can be used as precursors for the preparation of hydrophilic metal or metal oxides catalysts based on the unique topotactic process transformation. In this Overview Article, we will summarize the latest developments in the design and preparation of LDHs-based heterogeneous catalysts in green aqueous media.
    Catalysis Today 06/2014; 247(21). DOI:10.1016/j.cattod.2014.05.032 · 3.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A supermolecular photosensitizer with excellent anticancer behavior when used for photodynamic therapy (PDT) is fabricated by the incorporation of zinc phthalocyanines (ZnPc) into the gallery of a layered double hydroxide (LDH). The composite material possesses uniform particle size (hydrodynamic diameter ∼120 nm), and the host–guest and guest–guest interactions result in a high dispersion of ZnPc in a monomeric state in the interlayer region of the LDH matrix, with high singlet oxygen production efficiency. In vitro tests performed with HepG2 cells reveal a satisfactory PDT effectiveness of the ZnPc(1.5%)/LDH composite photosensitizer: a cellular damage as high as 85.7% is achieved with a rather low dosage of ZnPc (10 μg/mL). An extraordinarily high specific efficacy is demonstrated (31.59 μg−1 (J/cm2)−1), which is over 185.5% enhancement compared with the previously reported photosensitizers under similar test conditions. Furthermore, an in vivo study of the ZnPc(1.5%)/LDH demonstrates excellent PDT performance with an ultra-low dose (0.3 mg/kg) and a low optical fluence rate (54 J/cm2). In addition, the ZnPc/LDH photosensitizer displays high stability, good biocompatibility, and low cytotoxicity, which would guarantee its practical application. Therefore, this work provides a facile approach for design and fabrication of inorganic–organic supermolecular materials with greatly enhanced anticancer behavior.
    Advanced Functional Materials 06/2014; 24(21). DOI:10.1002/adfm.201303811 · 10.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hybrid films were fabricated via layer-by-layer assembly of layered double hydroxide (LDH) nanoplatelets and poly(sodium styrene-4-sulfonate) (PSS) followed by subsequent permeation of poly(vinyl alcohol) (PVA), which show excellent oxygen barrier performance with humidity-triggered self-healing capability.
    Chemical Communications 05/2014; 50(54). DOI:10.1039/c4cc01970a · 6.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fabricating active materials into specific macrostructures is critical in the pursuit of high electro-catalytic activity. Herein we demonstrate that a three-dimensional (3D) architecture of NiFe layered double hydroxide (NiFe-LDH) significantly reduced the onset potential, yielded high current density at small overpotentials, and showed outstanding stability in electrochemical oxygen evolution reaction.
    Chemical Communications 05/2014; 50(49). DOI:10.1039/c4cc01625d · 6.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A hierarchical nanostructure composed of NiMn-layered double hydroxide (NiMn-LDH) microcrystals grafted on carbon nanotube (CNT) backbone is constructed by an in situ growth route, which exhibits superior supercapacitive performance. The resulting composite material (NiMn-LDH/CNT) displays a three-dimensional architecture with tunable Ni/Mn ratio, well-defined core-shell configuration, and enlarged surface area. An electrochemical investigation shows that the Ni3Mn1-LDH/CNT electrode is rather active, which delivers a maximum specific capacitance of 2960 F g–1 (at 1.5 A g–1), excellent rate capability (79.5% retention at 30 A g–1), and cyclic stability. Moreover, an all-solid-state asymmetric supercapacitor (SC) with good flexibility is fabricated by using the NiMn-LDH/CNT film and reduced graphene oxide (RGO)/CNT film as the positive and negative electrode, respectively, exhibiting a wide cell voltage of 1.7 V and largely enhanced energy density up to 88.3 Wh kg–1 (based on the total weight of the device). By virtue of the high-capacity of pseudocapacitive hydroxides and desirable conductivity of carbon-based materials, the monolithic design demonstrated in this work provides a promising approach for the development of flexible energy storage systems.
    Advanced Functional Materials 05/2014; 24(20). DOI:10.1002/adfm.201303638 · 10.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: How to control the size and morphology of metal nanocatalysts is of vital importance in enhancing their catalytic performance. In this work, uniform and ultrafine Ru–B amorphous alloy nanoparticles (NPs) supported on titanate nanosheets were fabricated via a confined synthesis in titanate nanotubes (TNTs) followed by unwrapping the tube to sheetlike titanate (TNS) (denoted as Ru–B/TNS), which exhibit excellent catalytic performance toward the selective hydrogenation of benzene to cyclohexene (yieldcyclohexene: 50.7%) without any additives. HRTEM images show the resulting Ru–B NPs are highly dispersed on the titanate nanosheets (particle size: 2.5 nm), with a low Ru–Ru coordination number revealed by EXAFS. Moreover, XPS demonstrates the surface-enriched B element and a strong electron transfer from B to Ru, which facilitates the formation and desorption of cyclohexene on the Ru active-sites, accounting for the significantly enhanced catalytic behavior. The surfactant-free confined synthesis and additive-free catalytic system make the Ru–B/TNS catalyst a promising candidate for the selective hydrogenation of benzene.
    04/2014; 2(20). DOI:10.1039/C4TA00023D

Publication Stats

7k Citations
1,320.86 Total Impact Points


  • 1970–2015
    • Beijing University of Chemical Technology
      • College of Materials Science and Engineering (SMSE)
      Peping, Beijing, China
  • 2014
    • Green Chem
      Bengalūru, Karnataka, India
  • 2006
    • Chinese Academy of Sciences
      • Institute of Chemistry
      Peping, Beijing, China
  • 2005
    • National Tsing Hua University
      • Department of Chemistry
      Hsin-chu-hsien, Taiwan, Taiwan
    • University of Science and Technology, Beijing
      • School of Materials Science and Engineering
      Beijing, Beijing Shi, China
  • 2003
    • Beijing University of Aeronautics and Astronautics (Beihang University)
      Peping, Beijing, China