Tian Xia

Georgia Health Sciences University, Augusta, GA, United States

Are you Tian Xia?

Claim your profile

Publications (3)11.42 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nitric oxide receptor soluble guanylyl cyclase (sGC) exists in multimeric protein complexes, including heat shock protein (HSP) 90 and endothelial nitric oxide synthase. Inhibition of HSP90 by geldanamycin causes proteasomal degradation of sGC protein. In this study, we have investigated whether COOH terminus of heat shock protein 70-interacting protein (CHIP), a co-chaperone molecule that is involved in protein folding but is also a chaperone-dependent ubiquitin E3 ligase, could play a role in the process of degradation of sGC. Transient overexpression of CHIP in COS-7 cells degraded heterologous sGC in a concentration-related manner; this downregulation of sGC was abrogated by the proteasome inhibitor MG-132. Transfection of tetratricopeptide repeats and U-box domain CHIP mutants attenuated sGC degradation, suggesting that both domains are indispensable for CHIP function. Results from immunoprecipitation and indirect immunofluorescent microscopy experiments demonstrated that CHIP is associated with sGC, HSP90, and HSP70 in COS-7 cells. Furthermore, CHIP increased the association of HSP70 with sGC. In in vitro ubiquitination assays using purified proteins and ubiquitin enzymes, E3 ligase CHIP directly ubiquitinated sGC; this ubiquitination was potentiated by geldanamycin in COS-7 cells, followed by proteasomal degradation. In rat aortic smooth muscle cells, endogenous sGC was also degraded by adenovirus-infected wild-type CHIP but not by the chaperone interaction-deficient K30A CHIP, whereas CHIP, but not K30A, attenuated sGC expression in, and nitric oxide donor-induced relaxation of, rat aortic rings, suggesting that CHIP plays a regulatory role under physiological conditions. This study reveals a new mechanism for the regulation of sGC, an important mediator of cellular and vascular function.
    AJP Heart and Circulatory Physiology 12/2007; 293(5):H3080-7. · 4.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the existence of hsp90-NOS and hsp90-sGC complexes is now firmly established, their role in many pathophysiological processes remain unclear. These complexes may represent physiological mechanisms aimed at maximizing intracellular cGMP production in response to endogenous or drug-derived NO in endothelial cells and thus affecting permeability, proliferation, migration and apoptosis. Along with minimizing NO scavenging by superoxide and reducing the formation of peroxynitrite, these complexes may also prolong sGC stability by retarding its degradation. Our work and that of others have demonstrated that, depending on the environment, sGC interaction with hsp90 can optimize sGC enzyme activity or modulate sGC survival. This review addresses the functional significance of hsp90 complexes with NOS (eNOS, iNOS) and sGC in endothelial cells relevant for maintaining endothelial barrier integrity and angiogenesis. Structural and functional characteristics of sGC, its expression, transcriptional and post-translational regulation, as they relate to sGC-hsp90 interactions, will also be examined.
    Clinical hemorheology and microcirculation 02/2007; 37(1-2):19-35. · 3.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vascular soluble guanylate cyclase (sGC) exists in multimeric complexes with endothelial nitric oxide (NO) synthase (eNOS) and heat shock protein 90 (hsp90). Whereas disruption of hsp90-eNOS complexes clearly attenuates eNOS-dependent vascular relaxation, the contribution of sGC-hsp90 complexes to eNOS- or NO donor-dependent relaxations remains unclear. Isolated rat thoracic aortic rings were preincubated with structurally diverse hsp90 binding inhibitors, radicicol (RA) or geldanamycin (GA), or vehicle for 0.5, 1, or 15 h. Preconstricted vessels were exposed to ACh, 8-bromo-cGMP (8-BrcGMP), forskolin, or one of three NO donors: nitroglycerin (NTG), sodium nitroprusside, or spermine NONOate (SNN). Both RA and GA inhibited endothelium-dependent relaxations dose dependently. Indomethacin or the antioxidant tiron did not affect the inhibition of ACh-induced relaxations by GA. Long-term (15 h) exposure to RA inhibited all NO donor-induced relaxations; however, GA inhibited SNN-induced relaxation only. The effects of GA and RA appeared to be selective because 15-h treatment with either agent did not affect forskolin-induced relaxations and only slightly decreased 8-BrcGMP-induced relaxations. Similarly to their effects on NO-donor-induced relaxation, 15-h exposure to RA, but not to GA, decreased hsp90-bound sGC protein expression and NTG-stimulated cGMP formation in aortic rings, whereas RA more than GA reduced SNN-stimulated cGMP formation. We conclude that RA, much more so than GA, selectively inhibits sGC-dependent relaxations of aortic rings by reducing sGC expression, disrupting sGC-hsp90 complex formation and decreasing cGMP formation. These studies suggest that hsp90 regulates both eNOS- and sGC-dependent relaxations.
    AJP Heart and Circulatory Physiology 08/2006; 291(1):H260-8. · 4.01 Impact Factor