Ulf Hellman

Ludwig Institute for Cancer Research Sweden, Uppsala, Uppsala, Sweden

Are you Ulf Hellman?

Claim your profile

Publications (130)529.25 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Matrix metalloproteinase 2 (MMP-2) is involved in cancer development and is overexpressed in a variety of malignant tumors. MMP-2 activity is controlled mainly by transcription, proteolytic activation, and inhibition by endogenous inhibitors. It had previously been demonstrated that MMP-2 activity is also regulated by phosphorylation at several sites by protein kinase C. Here we demonstrate, by means of bioinformatics and biochemical and cellular assays, that protein kinase CK2 also acts as a modulator of MMP-2 activity. CK2 down-regulates MMP-2 in vitro, and inhibition of CK2 in human fibrosarcoma cells results in up-regulation of MMP-2. The discovery of the crosstalk between MMP-2 and CK2 opens the possibility of new combined anticancer therapies.
    ChemBioChem 07/2014; · 3.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chromosomal aneuploidy has been identified as a prognostic factor in the majority of sporadic carcinomas. However, it is not known how chromosomal aneuploidy affects chromosome-specific protein expression in particular, and the cellular proteome equilibrium in general. The aim was to detect chromosomal aneuploidy-associated expression changes in cell clones carrying trisomies found in colorectal cancer. We used microcell-mediated chromosomal transfer to generate three artificial trisomic cell clones of the karyotypically stable, diploid, yet mismatch-deficient, colorectal cancer cell line DLD1 - each of them harboring one extra copy of either chromosome 3, 7 or 13. Protein expression differences were assessed by two-dimensional gel electrophoresis and mass spectrometry, compared to whole-genome gene expression data, and evaluated by PANTHER classification system and Ingenuity Pathway Analysis (IPA). In total, 79 differentially expressed proteins were identified between the trisomic clones and the parental cell line. Up-regulation of PCNA and HMGB1 as well as down-regulation of IDH3A and PSMB3 were revealed as trisomy-associated alterations involved in regulating genome stability. These results show that trisomies affect the expression of genes and proteins that are not necessarily located on the trisomic chromosome, but reflect a pathway-related alteration of the cellular equilibrium.
    Analytical cellular pathology (Amsterdam) 01/2014; · 0.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nemo-like kinase (NLK), a proline-directed serine/threonine kinase regulated by phosphorylation, can be localized in the cytosol or in the nucleus. Whether the localization of NLK can affect cell survival or cell apoptosis is yet to be disclosed. In the present study we found that NLK was mainly localized in the nuclei of breast cancer cells, in contrast to a cytosolic localization in non-cancerous breast epithelial cells. The nuclear localization of NLK was mediated through direct interaction with Heat shock protein 27 (HSP27) which further protected cancer cells from apoptosis. The present study provides evidence of a novel mechanism by which HSP27 recognizes NLK in the breast cancer cells and prevents NLK-mediated cell apoptosis.
    PLoS ONE 01/2014; 9(5):e96506. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian seminal plasma contains membranous vesicles (exosomes), with a high content of cholesterol and sphingomyelin and a complex protein composition. Their physiological role is uncertain because sperm stabilization and activation effects have been reported. To analyze a putative modulatory role for semen exosomes on sperm activity in the boar, the effects of these vesicles on several sperm functional parameters were examined. Additionally, boar exosome proteins were sequenced and their incorporation into sperm was explored. Boar sperm were incubated under conditions that induce capacitation, manifested as increased tyrosine phosphorylation, cholesterol loss and greater fluidity in apical membranes, and the ability to undergo the lysophosphatidylcholine-induced acrosome reaction. After establishing this cluster of capacitation-dependent functional parameters, the effect produced by exosomes when present during or after sperm capacitation was analyzed. Exosomes inhibited the capacitation-dependent cholesterol efflux and fluidity increase in apical membranes, and the disappearance of a 14-kD phosphorylated polypeptide. In contrast, the acrosome reaction (spontaneous and lysophosphatidylcholine-induced) was not affected, and sperm binding to the oocyte zona pellucida was reduced only when vesicles were present during gamete coincubation. Liposomes with a lipid composition similar to that present in exosomes mimicked these effects, except the one on zona pellucida binding. Interaction between exosomes and sperm was confirmed by transfer of aminopeptidase activity. In addition, the major exosome protein, identified as actin, appeared to associate with sperm after coincubation. Exosome composition had a predominance for structural proteins (actin, plastin, ezrin, and condensin), enzymes, and several porcine seminal plasma-specific polypeptides (e.g., spermadhesins). Transfer of proteins from exosome to sperm and their ability to block cholesterol efflux supports a direct interaction between these vesicles and sperm, whereas inhibition of some capacitation-dependent features suggests a stabilizing function for exosomes in boar semen.
    Theriogenology 03/2013; · 2.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The multifunctional protein nucleolin (NCL) is over-expressed on the surface of activated endothelial and tumor cells and mediates the stimulatory actions of several angiogenic growth factors, such as pleiotrophin (PTN). Since alpha v beta 3 (αvβ3) integrin is also required for PTN-induced cell migration, the aim of the present work was to study the interplay between NCL and αvβ3 by using biochemical, immunofluorescence and proximity ligation assays in cells with genetically altered expression of the studied molecules. Interestingly, cell surface NCL localization was detected only in cells expressing αvβ3 and depended on the phosphorylation of β3 at Tyr773 through receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) and c-src activation. Down-stream of αvβ3, PI3K activity mediated this phenomenon and cell surface NCL was found to interact with both αvβ3 and RPTPβ/ζ. Positive correlation of cell surface NCL and αvβ3 expression was also observed in human glioblastoma tissue arrays, and inhibition of cell migration by cell surface NCL antagonists was observed only in cells expressing αvβ3. Collectively, these data suggest that both expression and β3 integrin phosphorylation at Tyr773 determine the cell surface localization of NCL downstream of the RPTPβ/ζ/c-src signaling cascade and can be used as a biomarker for the use of cell surface NCL antagonists as anticancer agents.
    Journal of Biological Chemistry 11/2012; · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of filamin in molluscan catch muscles is unknown. In this work three proteins isolated from the posterior adductor muscle of the sea mussel Mytilus galloprovincialis were identified by MALDI-TOF/TOF MS as homologous to mammalian filamin. They were named FLN-270, FLN-230 and FLN-105, according to their apparent molecular weight determined by SDS-PAGE: 270kDa, 230kDa and 105kDa, respectively. Both FLN-270 and FLN-230 contain the C-terminal dimerization domain and the N-terminal actin-binding domain typical of filamins. These findings, together with the data from peptide mass fingerprints, indicate that FLN-270 and FLN-230 are different isoforms of mussel filamin, with FLN-230 being the predominant isoform in the mussel catch muscle. De novo sequencing data revealed structural differences between both filamin isoforms at the rod 2 segment, the one responsible for the interaction of filamin with the most of its binding partners. FLN270 but not FLN230 was phosphorylated in vitro by cAMP-dependent protein kinase. As for the FLN-105, it would be an N-terminal proteolytic fragment generated from the FLN-270 isoform or a C-terminally truncated variant of filamin. On the other hand, a 45-kDa protein that copurifies with mussel catch muscle filamins was identified as the mussel calponin-like protein. The fact that this protein coelutes with the FLN-270 isoform from a gel filtration chromatography suggests a specific interaction between both proteins.
    Biochimica et Biophysica Acta 07/2012; 1824(12):1334-41. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, proteomics has come of age with the development of efficient tools for purification, identification, and characterization of gene products predicted by genome projects. The intestinal protozoan Giardia intestinalis can be transfected, but there is only a limited set of vectors available, and most of them are not user friendly. This work delineates the construction of a suite of cassette-based expression vectors for use in Giardia. Expression is provided by the strong constitutive ornithine carbamoyltransferase (OCT) promoter, and tagging is possible in both N- and C-terminal configurations. Taken together, the vectors are capable of providing protein localization and production of recombinant proteins, followed by efficient purification by a novel affinity tag combination, streptavidin binding peptide-glutathione S-transferase (SBP-GST). The option of removing the tags from purified proteins was provided by the inclusion of a PreScission protease site. The efficiency and feasibility of producing and purifying endogenous recombinant Giardia proteins with the developed vectors was demonstrated by the purification of active recombinant arginine deiminase (ADI) and OCT from stably transfected trophozoites. Moreover, we describe the tagging, purification by StrepTactin affinity chromatography, and compositional analysis by mass spectrometry of the G. intestinalis 26S proteasome by employing the Strep II-FLAG-tandem affinity purification (SF-TAP) tag. This is the first report of efficient production and purification of recombinant proteins in and from Giardia, which will allow the study of specific parasite proteins and protein complexes.
    Eukaryotic Cell 05/2012; 11(7):864-73. · 3.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinase C (PKC) δ is a regulator of apoptosis with both pro- and anti-apoptotic effects. The mechanistic basis for the discrepant effects is not completely understood. Here we show that Smac interacts with PKCδ. The interaction depends on the N-terminus of Smac and is disrupted upon treatment with paclitaxel. This is associated with release of Smac into the cytosol. Activation of PKCδ rescues the interaction during paclitaxel exposure and suppresses the paclitaxel-mediated cell death. However, under these conditions the complex is mainly found in the cytosol suggesting that cytosolic Smac can be bound by PKCδ when PKC is activated. The data unravel a previously unrecognized interaction and suggest that PKCδ by associating with Smac may prevent its apoptotic effects.
    FEBS letters 03/2012; 586(8):1166-72. · 3.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomic stability is one of the crucial prognostic factors for patients with endometrioid endometrial cancer (EEC). The impact of genomic stability on the tumour tissue proteome of EEC is not yet well established. Tissue lysates of EEC, squamous cervical cancer (SCC), normal endometrium and squamous cervical epithelium were subjected to two-dimensional (2D) gel electrophoresis and identification of proteins by MALDI TOF MS. Expression of selected proteins was analysed in independent samples by immunohistochemistry. Diploid and aneuploid genomically unstable EEC displayed similar patterns of protein expression. This was in contrast to diploid stable EEC, which displayed a protein expression profile similar to normal endometrium. Approximately 10% of the differentially expressed proteins in EEC were specific for this type of cancer with differential expression of other proteins observed in other types of malignancy (e.g., SCC). Selected proteins differentially expressed in 2D gels of EEC were further analysed in an EEC precursor lesion, that is, atypical hyperplasia of endometrium, and showed increased expression of CLIC1, EIF4A1 and PRDX6 and decreased expression of ENO1, ANXA4, EMD and Ku70. Protein expression in diploid and aneuploid genomically unstable EEC is different from the expression profile of proteins in diploid genomically stable EEC. We showed that changes in expression of proteins typical for EEC could already be detected in precursor lesions, that is, atypical hyperplasia of endometrium, highlighting their clinical potential for improving early diagnostics of EEC.
    British Journal of Cancer 03/2012; 106(7):1297-305. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plasma samples of ovarian and breast cancer patients were used to search for markers of cancer, using two-dimensional gel electrophoresis and MALDI TOF mass spectrometry. Truncated forms of cytosolic serine hydroxymethyl transferase (cSHMT), T-box transcription factor 3 (Tbx3) and utrophin were aberrantly expressed in samples from cancer patients, as compared to samples from noncancer cases. Aberrant expression of proteins was validated by immunoblotting of plasma samples with specific antibodies to cSHMT, Tbx3 and utrophin. A cohort of 79 breast and 39 ovarian cancer patients, and 31 individuals who were either healthy or had noncancerous conditions was studied. We observed increased expression of truncated cSHMT, Tbx3 and utrophin in plasma samples obtained from patients at early stages of disease. The results indicate that cSHMT, Tbx3, utrophin and truncated forms thereof can be used as components of multiparameter monitoring of ovarian and breast cancer.
    Ref. No: US 8187889 B2, Year: 01/2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thyroid proteomics is a new direction in thyroid cancer research aiming at etiological understanding and biomarker identification for improved diagnosis. Two-dimensional electrophoresis was applied to cytosolic protein extracts from frozen thyroid samples (ten follicular adenomas, nine follicular carcinomas, ten papillary carcinomas, and ten reference thyroids). Spots with differential expression were revealed by image and multivariate statistical analyses, and identified by mass spectrometry. A set of 25 protein spots significant for discriminating between the sample groups was identified. Proteins identified for nine of these spots were studied further including 14-3-3 protein beta/alpha, epsilon, and zeta/delta, peroxiredoxin 6, selenium-binding protein 1, protein disulfide-isomerase precursor, annexin A5 (ANXA5), tubulin alpha-1B chain, and α1-antitrypsin precursor. This subset of protein spots carried the same predictive power in differentiating between follicular carcinoma and adenoma or between follicular and papillary carcinoma, as compared with the larger set of 25 spots. Protein expression in the sample groups was demonstrated by western blot analyses. For ANXA5 and the 14-3-3 proteins, expression in tumor cell cytoplasm was demonstrated by immunohistochemistry both in the sample groups and an independent series of papillary thyroid carcinomas. The proteins identified confirm previous findings in thyroid proteomics, and suggest additional proteins as dysregulated in thyroid tumors.
    European Journal of Endocrinology 01/2012; 166(4):657-67. · 3.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinase C (PKC) isoforms regulate a number of processes crucial for the fate of a cell. In this study we identify previously unrecognized interaction partners of PKCα and a novel role for PKCα in the regulation of stress granule formation during cellular stress. Three RNA-binding proteins, cytoplasmic poly(A)(+) binding protein (PABPC1), IGF-II mRNA binding protein 3 (IGF2BP3), and RasGAP binding protein 2 (G3BP2) all co-precipitate with PKCα. RNase treatment abolished the association with IGF2BP3 and PABPC1 whereas the PKCα-G3BP2 interaction was largely resistant to this. Furthermore, interactions between recombinant PKCα and G3BP2 indicated that the interaction is direct and PKCα can phosphorylate G3BP2 in vitro. The binding is mediated via the regulatory domain of PKCα and the C-terminal RNA-binding domain of G3BP2. Both proteins relocate to and co-localize in stress granules, but not to P-bodies, when cells are subjected to stress. Heat shock-induced stress granule assembly and phosphorylation of eIF2α are suppressed following downregulation of PKCα by siRNA. In conclusion this study identifies novel interaction partners of PKCα and a novel role for PKCα in regulation of stress granules.
    PLoS ONE 01/2012; 7(4):e35820. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA-dependent protein kinase (DNA-PK) is a central regulator of DNA double-strand break (DSB) repair; however, the identity of relevant DNA-PK substrates has remained elusive. NR4A nuclear orphan receptors function as sequence-specific DNA-binding transcription factors that participate in adaptive and stress-related cell responses. We show here that NR4A proteins interact with the DNA-PK catalytic subunit and, upon exposure to DNA damage, translocate to DSB foci by a mechanism requiring the activity of poly(ADP-ribose) polymerase-1 (PARP-1). At DNA repair foci, NR4A is phosphorylated by DNA-PK and promotes DSB repair. Notably, NR4A transcriptional activity is entirely dispensable in this function, and core components of the DNA repair machinery are not transcriptionally regulated by NR4A. Instead, NR4A functions directly at DNA repair sites by a process that requires phosphorylation by DNA-PK. Furthermore, a severe combined immunodeficiency (SCID)-causing mutation in the human gene encoding the DNA-PK catalytic subunit impairs the interaction and phosphorylation of NR4A at DSBs. Thus, NR4As represent an entirely novel component of DNA damage response and are substrates of DNA-PK in the process of DSB repair.
    Genes & development 10/2011; 25(19):2031-40. · 12.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA aneuploidy has been identified as a prognostic factor in the majority of epithelial malignancies. We aimed at identifying ploidy-associated protein expression in endometrial cancer of different prognostic subgroups. Comparison of gel electrophoresis-based protein expression patterns between normal endometrium (n = 5), diploid (n = 7), and aneuploid (n = 7) endometrial carcinoma detected 121 ploidy-associated protein forms, 42 differentially expressed between normal endometrium and diploid endometrioid carcinomas, 37 between diploid and aneuploid endometrioid carcinomas, and 41 between diploid endometrioid and aneuploid uterine papillary serous cancer. Proteins were identified by mass spectrometry and evaluated by Ingenuity Pathway Analysis. Targets were confirmed by liquid chromatography/mass spectrometry. Mass spectrometry identified 41 distinct polypeptides and pathway analysis resulted in high-ranked networks with vimentin and Nf-κB as central nodes. These results identify ploidy-associated protein expression differences that overrule histopathology-associated expression differences and emphasize particular protein networks in genomic stability of endometrial cancer.
    Cellular and Molecular Life Sciences CMLS 07/2011; 69(2):325-33. · 5.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We propose Cys-X scanning as a semisynthetic approach to engineer the functional properties of recombinant proteins. As in the case of Ala scanning, key residues in the primary structure are identified, and one of them is replaced by Cys via site-directed mutagenesis. The thiol of the residue introduced is subsequently modified by alternative chemical reagents to yield diverse Cys-X mutants of the protein. This chemical approach is orthogonal to Ala or Cys scanning and allows the expansion of the repertoire of amino acid side chains far beyond those present in natural proteins. In its present application, we have introduced Cys-X residues in human glutathione transferase (GST) M2-2, replacing Met-212 in the substrate-binding site. To achieve selectivity of the modifications, the Cys residues in the wild-type enzyme were replaced by Ala. A suite of simple substitutions resulted in a set of homologous Met derivatives ranging from normethionine to S-heptyl-cysteine. The chemical modifications were validated by HPLC and mass spectrometry. The derivatized mutant enzymes were assayed with alternative GST substrates representing diverse chemical reactions: aromatic substitution, epoxide opening, transnitrosylation, and addition to an ortho-quinone. The Cys substitutions had different effects on the alternative substrates and differentially enhanced or suppressed catalytic activities depending on both the Cys-X substitution and the substrate assayed. As a consequence, the enzyme specificity profile could be changed among the alternative substrates. The procedure lends itself to large-scale production of Cys-X modified protein variants.
    Journal of Biological Chemistry 03/2011; 286(19):16871-8. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA aneuploidy has been identified as a prognostic factor for epithelial malignancies. Further understanding of the translation of DNA aneuploidy into protein expression will help to define novel biomarkers to improve therapies and prognosis. DNA ploidy was assessed by image cytometry. Comparison of gel-electrophoresis-based protein expression patterns of three diploid and four aneuploid colorectal cancer cell lines detected 64 ploidy-associated proteins. Proteins were identified by mass spectrometry and subjected to Ingenuity Pathway Analysis resulting in two overlapping high-ranked networks maintaining Cellular Assembly and Organization, Cell Cycle, and Cellular Growth and Proliferation. CAPZA1, TXNL1, and HDAC2 were significantly validated by Western blotting in cell lines and the latter two showed expression differences also in clinical samples using a tissue microarray of normal mucosa (n=19), diploid (n=31), and aneuploid (n=47) carcinomas. The results suggest that distinct protein expression patterns, affecting TXNL1 and HDAC2, distinguish aneuploid with poor prognosis from diploid colorectal cancers.
    Cellular and Molecular Life Sciences CMLS 02/2011; 68(19):3261-74. · 5.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Familial transthyretin (TTR) amyloidosis is caused by a mutation in the TTR gene, although wild-type (wt) TTR is also incorporated into the amyloid fibrils. Liver transplantation (LT) is the prevailing treatment of the disease and is performed in order to eliminate the mutant TTR from plasma. The outcome of the procedure is varied; especially problematic is a progressive cardiomyopathy seen in some patients, presumably caused by continued incorporation of wtTTR. What determines the discrepancy in outcome is not clear. We have previously shown that two structurally distinct amyloid fibrils (with or without fragmented ATTR) are found among ATTRV30M patients. In this study, we investigated the proportion of wtATTR in cardiac and adipose amyloid from patients having either fibril type. It was found that cardiac amyloid more easily incorporates wtTTR than adipose amyloid, offering a potential explanation for the vulnerability of cardiac tissue for continued amyloidosis after LT. In cardiac tissue, fibrils with fragmented ATTR contained a higher wt proportion than fibrils without, suggesting that continued incorporation of wtTTR after LT, perhaps, can take place more easily in these patients. In adipose tissue, a rapid increase in wt proportion after LT indicates that a rather fast turnover of the deposits must occur. A difference in wt proportion between the fibril types was seen post-LT but not pre-LT, possibly caused by differences in turnover rate. Conclusively, this study further establishes the basic dissimilarities between the two fibril types and demonstrates that their role in LT outcome needs to be further investigated.
    Journal of Molecular Medicine 02/2011; 89(2):171-80. · 4.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytology-based diagnostics of squamous cervical cancer (SCC) precursor lesions is subjective and can be improved by objective markers. IHC-based analysis of ANXA6, HSP27, peroxiredoxin 2 (PRDX2), NCF2, and tropomyosin 4 (TPM4) during SCC carcinogenesis. Expression of ANXA6, HSP27, PRDX2, and NCF2 in the cytoplasm of dysplastic cells increased from cervical intraepithelial neoplasia 2/3 (CIN2/3) to microinvasive cancer. Invasive SCC showed lower expression of TPM4 than CIN and normal epithelium. CIN2/3 with the highest sensitivity and specificity differed from normal epithelium by cytoplasmic expression of HSP27. Patients with cytoplasmic HSP27 expression in SCC deviating from that observed in normal epithelium had worse relapse-free (P=0.019) and overall (P=0.014) survival. Invasive SCC with the highest sensitivity and specificity differed from normal epithelium by expression of PRDX2 and TPM4 in the cytoplasm, from CIN2/3 by the expression of ANXA6 and TPM4 in the cytoplasm, and from microinvasive SCC by the expression of PRDX2 and ANXA6 in the cytoplasm. The number of sporadic ANXA6+ cells between the atypical cells increased from CIN2/3 to invasive SCC. Detection of expression changes of the proteins ANXA6, HSP27, PRDX2, NCF2, and TPM4 in SCC precursor lesions may aid current cytological and pathological diagnostics and evaluation of prognosis.
    British Journal of Cancer 01/2011; 104(1):110-9. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The molecular pathogenesis of the intestinal parasite Giardia intestinalis is still not fully understood but excretory-secretory products have been suggested to be important during host-parasite interactions. Here we used SDS-PAGE gels and MALDI-TOF analysis to identify proteins released by Giardia trophozoites during in vitro growth. Serum proteins (mainly bovine serum albumin) in the growth medium, bind to the parasite surface and they are continuously released, which interfere with parasite secretome characterization. However, we identified two released Giardia proteins: elongation factor-1 alpha (EF-1α) and a 58 kDa protein, identified as arginine deiminase (ADI). This is the first description of EF-1α as a released/secreted Giardia protein, whereas ADI has been identified in an earlier secretome study. Two genes encoding EF-1α were detected in the Giardia WB genome 35 kbp apart with almost identical coding sequences but with different promoter and 3' regions. Promoter luciferase-fusions showed that both genes are transcribed in trophozoites. The EF-1α protein localizes to the nuclear region in trophozoites but it relocalizes to the cytoplasm during host-cell interaction. Recombinant EF-1α is recognized by serum from giardiasis patients. Our results suggest that released EF-1α protein can be important during Giardia infections.
    Experimental Parasitology 01/2011; 127(4):804-10. · 2.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To date, eight assemblages of Giardia lamblia have been described, but only assemblages A and B are known to infect humans. Despite the fact that the genomic, biological, and clinical differences found between these two assemblages has raised the possibility that they may be considered different species, there is relatively limited information on their phenotypic differences. In the present study, we developed monoclonal antibodies against alpha-1 and beta giardin, two immunodominant proteins produced during G. lamblia infection, and studied their expression and localization in WB (assemblage A) and GS trophozoites (assemblage B). The polyclonal antibodies generated against WB trophozoites, particularly those recognizing intracellular proteins as well as the proteins present at the plasma membrane (variable-specific surface proteins), showed cross-reactivity with intracellular proteins in GS trophozoites. The use of monoclonal antibodies against beta giardin indicated ventral disc localization, particularly at the periphery in WB trophozoites. Interestingly, although beta giardin was also restricted to the ventral disc in GS trophozoites, the pattern of localization clearly differed in this assemblage. On the other hand, monoclonal antibodies against alpha-1 giardin showed plasma membrane localization in both assemblages with the bare area of GS trophozoites also being distinguished. Moreover, the same localization at the plasma membrane was observed in Portland-1 (Assemblage A) and in P15 (Assemblage E) trophozoites. We found differences in localization of the beta giardin protein between assemblages A and B, but the same pattern of localization of alpha-1 giardin in strains from Assemblages A, B and E. These findings reinforce the need for more studies based on phenotypic characteristics in order to disclose how far one assemblage is from the other.
    BMC Microbiology 01/2011; 11:233. · 3.10 Impact Factor

Publication Stats

2k Citations
529.25 Total Impact Points

Institutions

  • 1990–2014
    • Ludwig Institute for Cancer Research Sweden
      Uppsala, Uppsala, Sweden
  • 2012
    • Skåne University Hospital
      Malmö, Skåne, Sweden
    • Lund University
      • Center for Molecular Pathology (CMP)
      Lund, Skane, Sweden
  • 2003–2012
    • University of Santiago de Compostela
      • Facultad de Veterinaria
      Santiago de Compostela, Galicia, Spain
  • 2011
    • Universidad Andrés Bello
      • School of Medicine
      Santiago, Region Metropolitana de Santiago, Chile
  • 2005–2011
    • Uppsala University
      • • Department of Immunology, Genetics and Pathology
      • • The Rudbeck Laboratory
      • • Department of Cell and Molecular Biology
      Uppsala, Uppsala, Sweden
  • 2005–2010
    • National Academy of Sciences of Ukraine
      • • Institute of Cell Biology
      • • Department of Regulation of Cell Proliferation and Apoptosis
      Kharkiv, Kharkivs'ka Oblast', Ukraine
  • 2008
    • University of Santiago, Chile
      CiudadSantiago, Santiago, Chile
    • The University of Tokyo
      • Faculty & Graduate School of Medicine
      Tokyo, Tokyo-to, Japan
  • 2002–2008
    • John Paul II Catholic University of Lublin
      • Institute of Molecular Biology
      Lublin, Lublin Voivodeship, Poland
  • 2004
    • University of Chile
      • Facultad de Medicina
      Santiago, Region Metropolitana de Santiago, Chile
    • Japanese Foundation for Cancer Research
      Edo, Tōkyō, Japan