O. Tibolla

University of Wuerzburg, Würzburg, Bavaria, Germany

Are you O. Tibolla?

Claim your profile

Publications (211)812.14 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Supernova remnants (SNRs) are among the most important targets for gamma-ray observatories. Being prominent non-thermal sources, they are very likely responsible for the acceleration of the bulk of Galactic cosmic rays (CRs). To firmly establish the SNR paradigm for the origin of cosmic rays, it should be confirmed that protons are indeed accelerated in, and released from, SNRs with the appropriate flux and spectrum. This can be done by detailed theoretical models which account for microphysics of acceleration and various radiation processes of hadrons and leptons. The current generation of Cherenkov telescopes has insu�cient sensitivity to constrain theoretical models. A new facility, the Cherenkov Telescope Array (CTA), will have superior capabilities and may finally resolve this long standing issue of high-energy astrophysics. We want to assess the capabilities of CTA to reveal the physics of various types of SNRs in the initial 2000 years of their evolution. During this time, the effi�ciency to accelerate cosmic rays is highest. We perform time-dependent simulations of the hydrodynamics, the magnetic fields, the cosmic-ray acceleration, and the non-thermal emission for type Ia, Ic and IIP SNRs. We calculate the CTA response to the gamma-ray emission from these SNRs for various ages and distances, and we perform a realistic analysis of the simulated data. We derive distance limits for the detectability and resolvability of these SNR types at several ages. We test the ability of CTA to reconstruct their morphological and spectral parameters as a function of their distance. Finally, we estimate how well CTA data will constrain the theoretical models. (available on-line 28 September 2014)
    Astroparticle Physics 03/2015; 62:152. DOI:10.1016/j.astropartphys.2014.08.005 · 4.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We performed a 4.5-month multi-instrument campaign (from radio to VHE gamma rays) on Mrk421 between January 2009 and June 2009, which included VLBA, F-GAMMA, GASP-WEBT, Swift, RXTE, Fermi-LAT, MAGIC, and Whipple, among other instruments and collaborations. Mrk421 was found in its typical (non-flaring) activity state, with a VHE flux of about half that of the Crab Nebula, yet the light curves show significant variability at all wavelengths, the highest variability being in the X-rays. We determined the power spectral densities (PSD) at most wavelengths and found that all PSDs can be described by power-laws without a break, and with indices consistent with pink/red-noise behavior. We observed a harder-when-brighter behavior in the X-ray spectra and measured a positive correlation between VHE and X-ray fluxes with zero time lag. Such characteristics have been reported many times during flaring activity, but here they are reported for the first time in the non-flaring state. We also observed an overall anti-correlation between optical/UV and X-rays extending over the duration of the campaign. The harder-when-brighter behavior in the X-ray spectra and the measured positive X-ray/VHE correlation during the 2009 multi-wavelength campaign suggests that the physical processes dominating the emission during non-flaring states have similarities with those occurring during flaring activity. In particular, this observation supports leptonic scenarios as being responsible for the emission of Mrk421 during non-flaring activity. Such a temporally extended X-ray/VHE correlation is not driven by any single flaring event, and hence is difficult to explain within the standard hadronic scenarios. The highest variability is observed in the X-ray band, which, within the one-zone synchrotron self-Compton scenario, indicates that the electron energy distribution is most variable at the highest energies.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context: MWC 656 has recently been established as the first observationally detected high-mass X-ray binary system containing a Be star and a black hole (BH). The system has been associated with a gamma-ray flaring event detected by the AGILE satellite in July 2010. Aims: Our aim is to evaluate if the MWC 656 gamma-ray emission extends to very high energy (VHE > 100 GeV) gamma rays. Methods. We have observed MWC 656 with the MAGIC telescopes for $\sim$23 hours during two observation periods: between May and June 2012 and June 2013. During the last period, observations were performed contemporaneously with X-ray (XMM-Newton) and optical (STELLA) instruments. Results: We have not detected the MWC 656 binary system at TeV energies with the MAGIC Telescopes in either of the two campaigns carried out. Upper limits (ULs) to the integral flux above 300 GeV have been set, as well as differential ULs at a level of $\sim$5\% of the Crab Nebula flux. The results obtained from the MAGIC observations do not support persistent emission of very high energy gamma rays from this system at a level of 2.4\% the Crab flux.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Swift/UVOT observed magnitudes of all the observations performed on all the sources in the list.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Files in QDP format (.qdp;.pco) and PS of the Spectral Energy Distributions (SEDs) in Figs. 8-13.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the third Fermi Large Area Telescope source catalog (3FGL) of sources in the 100 MeV–300 GeV range. Based on the first four years of science data from the Fermi Gamma-ray Space Telescope mission, it is the deepest yet in this energy range. Relative to the 2FGL catalog, the 3FGL catalog incorporates twice as much data as well as a number of analysis improvements, including improved calibrations at the event reconstruction level, an updated model for Galactic diffuse γ-ray emission, a refined procedure for source detection, and im- proved methods for associating LAT sources with potential counterparts at other wavelengths. The 3FGL catalog includes 3033 sources above 4σ significance, with source location regions, spectral properties, and monthly light curves for each. Of these, 78 are flagged as potentially being due to imperfections in the model for Galactic diffuse emission. Twenty-five sources are modeled explicitly as spatially extended, and overall 232 sources are considered as identified based on angular extent or correlated variability (periodic or otherwise) observed at other wavelengths. For 1009 sources we have not found plausible counterparts at other wavelengths. More than 1100 of the identified or associated sources are ac- tive galaxies of the blazar class; several other classes of non-blazar active galaxies are also represented in the 3FGL. Pulsars represent the largest Galactic source class. From source counts of Galactic sources we estimate the contribution of unresolved sources to the Galactic diffuse emission is ∼3% at 1 GeV.
    The Astrophysical Journal Supplement Series 01/2015; · 14.14 Impact Factor
  • Article: Prolegomena
    Omar Tibolla, Luke Drury
    [Show abstract] [Hide abstract]
    ABSTRACT: In these preliminary remarks we discuss our motivations for holding the San Vito di Cadore conference as well as some personal reflections on the history and current status of the origin of cosmic rays. We argue that it is time to think beyond the ‘standard model’ and contemplate the possibility of sources other than SNRs contributing to the observed cosmic ray flux even if the bulk originate in SNRs. In fact everyone tacitly assumes that at the very highest energies we do in fact see a new extra-Galactic component, but what it is and where exactly the transition occurs remain subjects of investigation. Similarly the positron excess seen by PAMELA and confirmed by AMS clearly points to an additional source of high-energy leptons in our Galactic neighbourhood. The recent observation by Agile and Fermi of the remarkable Crab gamma-ray flares point to some non-standard and very rapid form of particle acceleration which, if it occurs in other environments, may contribute to the acceleration of cosmic rays. In summary, it is clear that the origin of cosmic rays is a richer field of study than just diffusive shock acceleration in SNRs.
    Nuclear Physics B - Proceedings Supplements 12/2014; 256. DOI:10.1016/j.nuclphysbps.2014.10.001 · 0.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A flare from the TeV blazar Mrk 421, occurring in March 2010, was observed for 13 consecutive days from radio to very high energy (VHE; E > 100 GeV) gamma-rays with MAGIC, VERITAS, Whipple, FermiLAT, MAXI, RXTE, Swift, GASP-WEBT, and several optical and radio telescopes. We model the day-scale SEDs with one-zone and two-zone synchrotron self-Compton (SSC) models, investigate the physical parameters, and evaluate whether the observed broadband SED variability can be associated to variations in the relativistic particle population. Flux variability was remarkable in the X-ray and VHE bands while it was minor or not significant in the other bands. The one-zone SSC model can describe reasonably well the SED of each day for the 13 consecutive days. This flaring activity is also very well described by a two-zone SSC model, where one zone is responsible for the quiescent emission while the other smaller zone, which is spatially separated from the first one, contributes to the daily-variable emission occurring in X-rays and VHE gamma-rays. Both the one-zone SSC and the two-zone SSC models can describe the daily SEDs via the variation of only four or five model parameters, under the hypothesis that the variability is associated mostly to the underlying particle population. This shows that the particle acceleration and cooling mechanism producing the radiating particles could be the main one responsible for the broadband SED variations during the flaring episodes in blazars. The two-zone SSC model provides a better agreement to the observed SED at the narrow peaks of the low- and high-energy bumps during the highest activity, although the reported one-zone SSC model could be further improved by the variation of the parameters related to the emitting region itself ($\delta$, $B$ and $R$), in addition to the parameters related to the particle population.
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: The number of known very high energy (VHE) blazars is ∼50, which is very small in comparison to the number of blazars detected in other frequencies. This situation is a handicap for population studies of blazars, which emit about half of their luminosity in the γ-ray domain. Moreover, VHE blazars, if distant, allow for the study of the environment that the high-energy γ-rays traverse in their path towards the Earth, like the extragalactic background light (EBL) and the intergalactic magnetic field (IGMF), and hence they have a special interest for the astrophysics community. We present the first VHE detection of 1ES 0033+595 with a statistical significance of 5.5σ. The VHE emission of this object is constant throughout the MAGIC observations (2009 August and October), and can be parametrized with a power law with an integral flux above 150 GeV of (7.1 ± 1.3) × 10−12 photons cm−2 s−1 and a photon index of (3.8 ± 0.7). We model its spectral energy distribution (SED) as the result of inverse Compton scattering of synchrotron photons. For the study of the SED, we used simultaneous optical R-band data from the KVA telescope, archival X-ray data by Swift as well as INTEGRAL, and simultaneous high-energy (HE, 300 MeV–10 GeV) γ-ray data from the Fermi Large Area Telescope (LAT) observatory. Using the empirical approach of Prandini et al. (2010) and the Fermi LAT and MAGIC spectra for this object, we estimate the redshift of this source to be 0.34 ± 0.08 ± 0.05. This is a relevant result because this source is possibly one of the 10 most distant VHE blazars known to date, and with further (simultaneous) observations could play an important role in blazar population studies, as well as future constraints on the EBL and IGMF.
    Monthly Notices of the Royal Astronomical Society 11/2014; 446(1):217-225. DOI:10.1093/mnras/stu2024 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Supermassive black holes with masses of millions to billions of solar masses are commonly found in the centers of galaxies. Astronomers seek to image jet formation using radio interferometry but still suffer from insufficient angular resolution. An alternative method to resolve small structures is to measure the time variability of their emission. Here we report on gamma-ray observations of the radio galaxy IC 310 obtained with the MAGIC telescopes, revealing variability with doubling time scales faster than 4.8 min. Causality constrains the size of the emission region to be smaller than 20% of the gravitational radius of its central black hole. We suggest that the emission is associated with pulsar-like particle acceleration by the electric field across a magnetospheric gap at the base of the radio jet.
    Science 11/2014; 346(6213). DOI:10.1126/science.1256183 · 31.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mrk 501 is one of the brightest blazars at TeV energies and has been extensively studied since its first VHE detection in 1996. Our goal is to characterize in detail the source gamma-ray emission, together with the radio-to-X-ray emission, during the non-flaring (low) activity, which is less often studied than the occasional flaring (high) activity. We organized a multiwavelength (MW) campaign on Mrk 501 between March and May 2008. This multi-instrument effort included the most sensitive VHE gamma-ray instruments in the northern hemisphere, namely the imaging atmospheric Cherenkov telescopes MAGIC and VERITAS, as well as Swift, RXTE, the F-GAMMA, GASP-WEBT, and other collaborations and instruments. Mrk 501 was found to be in a low state of activity during the campaign, with a VHE flux in the range of 10%-20% of the Crab nebula flux. Nevertheless, significant flux variations were detected with various instruments, with a trend of increasing variability with energy. The broadband spectral energy distribution during the two different emission states of the campaign can be adequately described within the homogeneous one-zone synchrotron self-Compton model, with the (slightly) higher state described by an increase in the electron number density. This agrees with previous studies of the broadband emission of this source during flaring and non-flaring states. We report for the first time a tentative X-ray-to-VHE correlation during a low VHE activity. Although marginally significant, this positive correlation between X-ray and VHE, which has been reported many times during flaring activity, suggests that the mechanisms that dominate the X-ray/VHE emission during non-flaring-activity are not substantially different from those that are responsible for the emission during flaring activity.
    Astronomy and Astrophysics 10/2014; 573. DOI:10.1051/0004-6361/201322906 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The MAGIC telescopes are two Imaging Atmospheric Cherenkov Telescopes (IACTs) located on the Canary island of La Palma. The telescopes are designed to measure Cherenkov light from air showers initiated by gamma rays in the energy regime from around 50 GeV to more than 50 TeV. The two telescopes were built in 2004 and 2009, respectively, with different cameras, triggers and readout systems. In the years 2011-2012 the MAGIC collaboration undertook a major upgrade to make the stereoscopic system uniform, improving its overall performance and easing its maintenance. In particular, the camera, the receivers and the trigger of the first telescope were replaced and the readout of the two telescopes was upgraded. This paper (Part I) describes the details of the upgrade as well as the basic performance parameters of MAGIC such as raw data treatment, dead time of the system, linearity in the electronic chain and sources of noise. In Part II, we describe the physics performance of the upgraded system.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in the Canary island of La Palma, Spain. During summer 2011 and 2012 it underwent a series of upgrades, involving the exchange of the MAGIC-I camera and its trigger system, as well as the upgrade of the readout system of both telescopes. We use observations of the Crab Nebula taken at low and medium zenith angles to assess the key performance parameters of the MAGIC stereo system. For low zenith observations the trigger threshold of the MAGIC telescopes is about 50GeV. The integral sensitivity for sources with Crab Nebula-like spectrum above 220GeV is (0.66+/-0.03)% of Crab Nebula flux in 50 h of observations. The angular resolution at those energies is < 0.07 degree, while the energy resolution is 16%. We also re-evaluate the effect of the systematic uncertainty on the data taken with the MAGIC telescopes after the upgrade. We estimate that the systematic uncertainties can be divided in following components: < 15% in energy scale, 11-18% in flux normalization and +/-0.15 for the energy spectrum power-law slope.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have conducted a multiwavelength survey of 42 radio loud narrow-1ine Seyfert 1 galaxies (RLNLS1s), selected by searching among all the known sources of this type and omitting those with steep radio spectra. We analyse data from radio frequencies to X-rays, and supplement these with information available from online catalogs and the literature in order to cover the full electromagnetic spectrum. This is the largest known multiwavelength survey for this type of source. We detected 90% of the sources in X-rays and found 17% at gamma rays. Extreme variability at high energies was also found, down to timescales as short as hours. In some sources, dramatic spectral and flux changes suggest interplay between a relativistic jet and the accretion disk. The estimated masses of the central black holes are in the range ∼106−8M⊙, smaller than those of blazars, while the accretion luminosities span a range from ∼0.01 to ∼0.49 times the Eddington limit, with an outlier at 0.003. The distribution of the calculated jet power spans a range from ∼1042.6 to ∼1045.6 erg s−1, generally lower than quasars and BL Lac objects, but partially overlapping with the latter. Once normalised by the mass of the central black holes, the jet power of the three types of active galactic nuclei are consistent with each other, indicating the scalability of the jet. Despite the observational differences, the central engine of RLNLS1s is apparently quite similar to that of blazars. The historical difficulties in finding radio-loud narrow-line Seyfert 1 galaxies might be due to their low power and to intermittent jet activity.
    Astronomy and Astrophysics 09/2014; 575:A13. DOI:10.1051/0004-6361/201424972 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We aim to characterize the broadband emission from 2FGL J2001.1+4352, which has been associated with the unknown-redshift blazar MG4 J200112+4352. Based on its gamma-ray spectral properties, it was identified as a potential very high energy (VHE; E > 100 GeV) gamma-ray emitter. The source was observed with MAGIC first in 2009 and later in 2010 within a multi-instrument observation campaign. The MAGIC observations yielded 14.8 hours of good quality stereoscopic data. The object was monitored at radio, optical and gamma-ray energies during the years 2010 and 2011. The source, named MAGIC J2001+439, is detected for the first time at VHE with MAGIC at a statistical significance of 6.3 {\sigma} (E > 70 GeV) during a 1.3-hour long observation on 2010 July 16. The multi-instrument observations show variability in all energy bands with the highest amplitude of variability in the X-ray and VHE bands. We also organized deep imaging optical observations with the Nordic Optical Telescope in 2013 to determine the source redshift. We determine for the first time the redshift of this BL Lac object through the measurement of its host galaxy during low blazar activity. Using the observational evidence that the luminosities of BL Lac host galaxies are confined to a relatively narrow range, we obtain z = 0.18 +/- 0.04. Additionally, we use the Fermi-LAT and MAGIC gamma-ray spectra to provide an independent redshift estimation, z = 0.17 +/- 0.10. Using the former (more accurate) redshift value, we adequately describe the broadband emission with a one-zone SSC model for different activity states and interpret the few-day timescale variability as produced by changes in the high-energy component of the electron energy distribution.
    Astronomy and Astrophysics 09/2014; 572. DOI:10.1051/0004-6361/201424254 · 4.48 Impact Factor
  • Source
    Astronomy and Astrophysics 09/2014; 569:A46. DOI:10.1051/0004-6361/201423484 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PG 1553+113 is a very-high-energy (VHE, E>100 GeV) gamma-ray emitter classified as a BL Lac object. Its redshift is constrained by intergalactic absorption lines in the range 0.4<z<0.58. The MAGIC telescopes have monitored the source's activity since 2005. In early 2012, PG 1553+113 was found in a high-state, and later, in April of the same year, the source reached the highest VHE flux state detected so far. Simultaneous observations carried out in X-rays during 2012 April show similar flaring behaviour. In contrast, the gamma-ray flux at E<100 GeV observed by Fermi-LAT is compatible with steady emission. In this paper, a detailed study of the flaring state is presented. The VHE spectrum shows clear curvature, being well fitted either by a power-law with an exponential cut-off or by a log-parabola. A simple power-law fit hypothesis for the observed shape of the PG 1553+113 VHE gamma-ray spectrum is rejected with a high significance (fit probability P=2.6 x 10^{-6}). For the first time a VHE spectral shape compatible with an exponential decay has been found in a distant blazar (z>0.2). The observed curvature is compatible with the extragalactic background light (EBL) imprint predicted by the current generation of EBL models assuming a redshift z~0.4. New constraints on the redshift were derived from the VHE spectrum. These constraints are compatible with previous limits and suggest that the source is most likely located around the optical lower limit, z=0.4. Finally, we find that the synchrotron self-Compton (SSC) model gives a satisfactory description of the observed multi-wavelength spectral energy distribution during the flare.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HESS J1507-622 is one of the bright unidentified TeV objects. HESS J1507-622 is unique, since the location of the object is off the Galactic disk. We observed the HESS J1507-622 region with the Suzaku XIS, and found no obvious counterpart although there is no severe interstellar extinction. However, there are two interesting X-ray objects; SRC1 is a bright extended source, and SRC2 is a faint diffuse object. If either of them is a counterpart, the flux ratio between TeV and X-ray is large, and HESS J1507-622 is a real dark particle accelerator.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been claimed that the nova-like cataclysmic variable (CV) AE Aquarii (AE Aqr) is a very-high-energy (VHE, $E>$100 GeV) source both on observational and theoretical grounds. We aim to search for VHE gamma-ray emission from AE Aqr during different states of the source at several wavelengths to confirm or rule out previous claims of detection of gamma-ray emission from this object. We report on observations of AE Aqr performed by MAGIC. The source was observed during 12 hours as part of a multiwavelength campaign carried out between May and June 2012 covering the optical, X-ray, and gamma-ray ranges. Besides MAGIC, the other facilities involved were the KVA, Skinakas, and Vidojevica telescopes in the optical and Swift in X-rays. We calculated integral upper limits coincident with different states of the source in the optical. We computed upper limits to the pulsed emission limiting the signal region to 30% of the phaseogram and we also searched for pulsed emission at different frequencies applying the Rayleigh test. AE Aqr was not detected at VHE energies during the multiwavelength campaign. We establish integral upper limits at the 95\% confidence level for the steady emission assuming the differential flux proportional to a power-law function d\phi/dE \propto E^{-Gamma}, with a Crab-like photon spectral index of Gamma=2.6. The upper limit above 200 GeV is 6.4\times10^{-12} cm^{-2}s^{-1} and above 1 TeV is 7.4\times10^{-13} cm^{-2}s^{-1}. We obtained an upper limit for the pulsed emission of 2.6\times10^{-12} cm^{-2}s^{-1} for energies above 200 GeV. Applying the Rayleigh test for pulsed emission at different frequencies we did not find any significant signal. Our results indicate that AE Aqr is not a VHE gamma-ray emitter at the level of emission previously claimed. We have established the most constraining upper limits for the VHE gamma-ray emission of AE Aqr.

Publication Stats

5k Citations
812.14 Total Impact Points

Institutions

  • 2010–2014
    • University of Wuerzburg
      • • Faculty of Physics and Astronomy
      • • Department of Theoretical and Astrophysics
      Würzburg, Bavaria, Germany
    • French National Centre for Scientific Research
      • Laboratoire de l'univers et de ses théories (LUTH)
      Lutetia Parisorum, Île-de-France, France
    • The Astronomical Observatory of Brera
      Merate, Lombardy, Italy
    • Dublin Institute for Advanced Studies
      Dublin, Leinster, Ireland
  • 2013
    • Deutsches Elektronen-Synchrotron
      Hamburg, Hamburg, Germany
  • 2011
    • INFN - Istituto Nazionale di Fisica Nucleare
      Frascati, Latium, Italy
    • University of Hamburg
      • Institut für Experimentalphysik
      Hamburg, Hamburg, Germany
    • Humboldt-Universität zu Berlin
      • Department of Physics
      Berlín, Berlin, Germany
    • National Institute of Astrophysics
      Roma, Latium, Italy
  • 2008–2011
    • Max Planck Institute for Nuclear Physics
      Heidelburg, Baden-Württemberg, Germany
  • 2009
    • University of Namibia
      • Department of Physics
      Windhuk, Khomas, Namibia
    • Universität Heidelberg
      Heidelburg, Baden-Württemberg, Germany
    • Durham University
      • Department of Physics
      Durham, England, United Kingdom
  • 2005
    • University of Padova
      • Department of Physics and Astronomy "Galileo Galilei"
      Padua, Veneto, Italy