V Martínez

Medivir, Tukholma, Stockholm, Sweden

Are you V Martínez?

Claim your profile

Publications (67)358.44 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: We previously showed that activation of GABA(B) receptors by intravenous baclofen reduces pseudo-affective responses to colorectal distension in rats. Here we evaluate the potential clinical significance of these observations. Clinically relevant colorectal distension protocols were used to assess the effects of oral baclofen on visceromotor and autonomic cardiovascular responses in conscious rats. Plasma levels of baclofen were monitored to provide clinical relevance to the doses used. Conscious female Sprague-Dawley rats were subjected to repeated noxious colorectal distension (12 × 80 mmHg), ascending-phasic colorectal distension (10-80 mmHg, 10 mmHg increments) or ramp colorectal distension (10 min ramp at 8 mmHg/min). Visceromotor and cardiovascular responses (mean arterial blood pressure and heart rate) were monitored. Pain-related response thresholds were assessed using ascending-phasic and ramp colorectal distension. Baclofen (1-10 μmol/kg, p.o.) reduced the visceromotor response to colorectal distension, reaching a 40% maximal inhibition (p < 0.05). The highest dose (10 μmol/kg, p.o.) also inhibited pain-related cardiovascular responses in telemetrized rats (50-55% reduction in colorectal distension-evoked hypertensive and tachycardic responses; p < 0.05). Similar thresholds for pain-related visceromotor responses were determined during ramp or ascending-phasic colorectal distension (34.1 ± 1.9 and 31.7 ± 3.2 mmHg, respectively). Baclofen (10 μmol/kg, p.o.) increased thresholds to 71.1 ± 3.7 and 77.5 ± 1.8 mmHg during ramp and ascending-phasic colorectal distension, respectively (p < 0.001). Plasma levels of baclofen were 3.3 ± 0.2 μmol/l at 90 min post-dosing, corresponding to the end of the colorectal distension procedure. Oral baclofen, at plasma levels similar to those reported safe and within a therapeutic range in humans, produced significant visceral anti-nociceptive effects in rats.
    Scandinavian journal of gastroenterology 03/2011; 46(6):652-62. · 2.08 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The vanilloid-1 receptor TRPV1 is known to play a role in extrinsic gastrointestinal afferent function. We investigated the role of TRPV1 in mechanosensitivity in afferents from normal and inflamed tissue. Colonic mechanosensitivity was determined in an in vitro rat colon preparation by recording from attached splanchnic nerves. Recordings were made from serosal/mesenteric afferents responding only at high thresholds to graded mechanical stimulation with von Frey probes. Colonic inflammation was induced by adding 5% dextran sulphate sodium (DSS) to the drinking water for 5 days, and was confirmed by histopathology. The selective TRPV1 antagonist, SB-750364 (10(-8) to 10(-6)M), was tested on mechanosensory stimulus response functions of afferents from normal and inflamed preparations (N=7 each). Mechanosensory responses had thresholds of 1-2g, and maximal responses were observed at 12 g. The stimulus response function was not affected by DSS-induced colitis. SB-750364 had no effect on stimulus response functions in normal preparations, but reduced (up to 60%) in a concentration-dependent manner those in inflammation (2-way ANOVA, p<0.05). Moreover, in inflamed tissue, spontaneous afferent activity showed a dose-dependent trend toward reduction with SB-750364. We conclude that mechanosensitivity of high-threshold serosal colonic splanchnic afferents to graded stimuli is unaffected during DSS colitis. However, there is a positive influence of TRPV1 in mechanosensitivity in inflammation, suggesting up-regulation of excitatory TRPV1-mediated mechanisms.
    Neuroscience Letters 05/2009; 459(2):57-61. · 2.03 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: 5-Hydroxytryptamine 1A (5-HT(1A)) receptors have been suggested as a target for the treatment of irritable bowel syndrome (IBS). A recent clinical trial investigating the efficacy of the selective 5-HT(1A) antagonist AZD7371 [3(R)-(N,N-dicyclobutylamino)-8-fluoro-3,4-dihydro-2H-1-benzopyran-5-carboxamide (R,R)-tartrate monohydrate] showed no symptomatic improvement in IBS patients. We characterized the mechanisms mediating potential analgesic effects of AZD7371 in a model of colorectal distension (CRD)-induced visceral pain in rats to understand its mechanism of action and the lack of clinical efficacy. Visceromotor and cardiovascular responses (telemetry) were assessed in conscious rats during noxious CRD (80 mm Hg). Effects of AZD7371 (3-300 nmol/kg i.v.; 1-30 micromol/kg p.o.) and a reference 5-HT(1A) antagonist, WAY-100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridyl)cyclohexanecarboxamide maleate salt; 3-300 nmol/kg i.v.), were assessed. Effects of intracerebroventricular AZD7371 were also evaluated. Intravenous AZD7371 or WAY-100635 and oral AZD7371 dose-dependently inhibited visceromotor responses to CRD (ED(50), 203, 231, and 14 micromol/kg, respectively). In telemetrized rats, oral AZD7371 inhibited visceromotor responses to CRD without affecting the concomitant hypertensive and tachycardic responses. Intracerebroventricular AZD7371 did not affect visceromotor responses, whereas it inhibited micturition. None of the doses tested induced visible gross side effects. AZD7371, likely acting at a spinal site, inhibited the visceromotor but not the cardiovascular responses to visceral pain in the CRD model in rats. Although agents effective on multiple pain-related readouts in the CRD model (e.g., pregabalin or clonidine) alleviate IBS symptoms, AZD7371, which is effective on only one pain-related pseudoaffective readout, does not. Data from preclinical CRD models of visceral pain need to be interpreted cautiously as it relates to their clinical translational value.
    Journal of Pharmacology and Experimental Therapeutics 04/2009; 329(3):1048-55. · 3.89 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Activation of cannabinoid receptors (CB(1), CB(2) and GPR(55)) produces analgesic effects in several experimental pain models, including visceral pain arising from the gastrointestinal tract. We assessed the role of CB(1), CB(2), and GPR(55) receptors and the endogenous cannabinoid system on basal pain responses and acute mechanical hyperalgesia during colorectal distension (CRD) in rodents. The effects of cannabinoid receptor agonists and antagonists on pain-related responses to CRD were assessed in rats and in wild-type and CB(1) receptor knock-out mice. The dual CB(1/2) agonist, WIN55,212-2, and the peripherally acting CB(1)-selective agonist, SAB-378, inhibited pain-related responses to repetitive noxious CRD (80 mmHg) in a dose-related manner in rats. The analgesic effects of WIN55,212-2 and SAB-378 were blocked by the selective CB(1) antagonist SR141716, but were not affected by the selective CB(2) antagonist SR144528. SR141716, per se, increased the responses to repetitive noxious CRD, indicative of hyperalgesia, and induced pain-related responses during non-noxious CRD (20 mmHg), indicative of allodynia. The cannabinoid receptor agonists anandamide, virodhamine and O-1602 had no effect. At analgesic doses, WIN55,212-2 did not affect colonic compliance. In accordance to the rat data, WIN55,212-2 produced analgesia, whereas SR141716 induced hyperalgesia, during noxious CRD (55 mmHg) in wild-type but not in CB(1)-knock-out mice. These data indicate that peripheral CB(1) receptors mediate the analgesic effects of cannabinoids on visceral pain from the gastrointestinal tract. The allodynic and hyperalgesic responses induced by SR141716 suggest the existence of an endogenous cannabinoid tone and the activation of CB(1) receptors during noxious CRD.
    Journal of Neuroscience 03/2009; 29(5):1554-64. · 6.91 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Transient receptor potential vanilloid 1 (TRPV1) channels have been implicated in pain mechanisms and, particularly, in the development of hyperalgesia. We used selective TRPV1 antagonists (NGV-1, SB-750364 and JYL 1421) to assess the role of TRPV1 channels in repetitive noxious colorectal distension (CRD)-induced visceral pain responses in rats. Isobaric CRD (80 mmHg) induced a viscerosomatic response, indicative of visceral pain associated to the distension procedure. Repetition (12 consecutive distensions) of the CRD resulted in an increase in the response over time (119+/-23% increase at distension 12, P<0.05 vs response during the 1st distension) indicative of acute mechanical sensitization. NGV-1 (0.1, 0.3, 1 or 3 micromol/kg, i.v.) prevented in a dose-related manner the development of sensitization, without inducing hypoalgesic responses. SB-750364 (30 micromol/kg, i.v.) had a transitory effect, partially reducing the sensitization response, while JYL 1421 (4.7 micromol/kg, i.v.) was without effect. In the same conditions, the cannabinoid receptor 1 (CB(1)) agonist, WIN55,212-2 (0.1 micromol/kg) reduced pain responses leading to a hypoalgesic state. At 3 micromol/kg, NGV-1, did not affect the pressure-volume relationship during CRD, indicating that TRPV1 channels do not modulate colonic compliance. These observations suggest that TRPV1 channels are involved in the development of acute mechanical colonic hyperalgesia during repetitive noxious CRD in rats. Antagonism of TRPV1 channels might result in antihyperalgesic effects without hypoalgesic activity and might be beneficial in the treatment of visceral pain disorders, such as irritable bowel syndrome. These observations warrant the clinical assessment of TRPV1 antagonists for the treatment of visceral pain.
    European journal of pharmacology 03/2009; 611(1-3):85-91. · 2.59 Impact Factor
  • Gastroenterology 01/2009; 136(5). · 12.82 Impact Factor
  • Gastroenterology 01/2009; 136(5). · 12.82 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Colonic ischaemia and mast cells have been involved in the pathophysiology of the functional gastrointestinal disorder irritable bowel syndrome, although the cause-effect relationships remain unknown. We assessed long-term histopathological and functional changes associated to an acute ischaemic episode (1 h) of the colon, followed by 8-week recovery, in rats. Functional colonic alterations [sensitivity during colorectal distension (CRD), compliance and propulsive motility] were assessed regularly during the recovery. Colonic histopathology (presence of inflammation, morphometric alterations and variations in neuronal density in the enteric nervous system) 8-week postischaemia was assessed. Following ischaemia, none of the functional parameters tested (motility, sensitivity and compliance) were affected. At necropsy, the colon presented an overall normal appearance with an increase in weight of the ischaemic area (mg/cm: 99 +/- 6; P < 0.05 vs. control: 81 +/- 4 or sham ischaemia: 81 +/- 3). Histopathological evaluations revealed the presence of a local infiltrate of mast cells in the area of ischaemia (nb of mast cells: 142 +/- 50; P < 0.05 vs. control, 31 +/- 14 or sham ischaemia: 40 +/- 16), without other significant alterations. Animals subjected to colonic ischaemia and treated 8 weeks later with the mast cell degranulator, compound 48/80, showed no changes in CRD-related pain responses. These studies show that acute colonic ischaemia is associated with the presence of a long-term local infiltration of mast cells, located within the serosa and muscle layers, despite the absence of functional changes, including colonic sensitivity. Considering the important pathophysiological functions of mast cells, the observed mast cell infiltration may be involved in ischaemia-induced functional changes yet to be characterized.
    International Journal of Experimental Pathology 01/2009; 89(6):476-89. · 2.04 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Visceral hypersensitivity and stress have been implicated in the pathophysiology of functional gastrointestinal disorders. We used a selective vasopressin 3 (V(3)) receptor antagonist SSR149415 to investigate the involvement of the vasopressin (AVP)/V(3) signaling system in the development of stress-induced visceral hyperalgesia in rats. Rats were exposed to a daily 1-h session of water avoidance stress (WAS) or sham WAS for 10 consecutive days. The visceromotor response to phasic colorectal distension (CRD, 10-60 mmHg) was assessed before and after stress. Animals were treated daily with SSR149415 (0.3, 1, or 3 mg/kg ip 30 min before each WAS or sham WAS session), with a single dose of SSR149415 (1 mg/kg ip), or the selective corticotropin-releasing factor 1 (CRF(1)) antagonist DMP-696 (30 mg/kg po) before CRD at day 11. Effects of a single dose of SSR149415 (10 mg/kg iv) on acute mechanical sensitization during repetitive CRD (12 distensions at 80 mmHg) were also assessed. In vehicle-treated rats, repeated WAS increased the response to CRD, indicating visceral hypersensitivity. Repeated administration of SSR149415 at 1 or 3 mg/kg completely prevented stress-induced visceral hyperalgesia. Similarly, a single dose of DMP-696 or SSR149415 completely blocked hyperalgesic responses during CRD. In contrast, a single dose of SSR149415 did not affect the acute hyperalgesic responses induced by repeated, noxious distension. These data support a major role for V(3) receptors in repeated psychological stress-induced visceral hyperalgesia and suggest that pharmacological manipulation of the AVP/V(3) pathway might represent an attractive alternative to the CRF/CRF(1) pathway for the treatment of chronic stress-related gastrointestinal disorders.
    AJP Gastrointestinal and Liver Physiology 12/2008; 296(2):G302-9. · 3.65 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Activation of GABA(B) receptors by the selective agonist baclofen produces anti-nociceptive effects in animal models of somatic pain. The aim of the present study was to evaluate the effect of baclofen and the GABA(B) receptor positive allosteric modulator CGP7930 on pseudo-affective responses to colorectal distension in rats. Female Sprague-Dawley rats were subjected to repeated, noxious colorectal distension (CRD) (12 distensions at 80 mmHg, for 30 s with 5 min intervals). The visceromotor response (VMR) and cardiovascular responses (mean arterial blood pressure (ABP) and heart rate (HR)) to CRD were monitored in conscious, telemetrized animals. Baclofen (0.3-3 micromol/kg, i.v.) reduced the VMR to CRD dose-dependently, reaching a 61% maximal inhibition (p < 0.001). The highest doses of baclofen attenuated CRD-evoked increases in ABP by 17% (p > 0.05) and reduced the change in HR by 48% (p < 0.01). CGP7930 (3-30 micromol/kg, i.v.) reduced the VMR to CRD in a dose-dependent fashion with a maximal inhibition of 31% (p < 0.05). The highest dose of CGP7930 also attenuated the increase in ABP by 18% (p > 0.05) and inhibited the increase in HR by 24% (p < 0.05) associated with CRD. Neither baclofen nor CGP7930 affected colorectal compliance. The results suggest that activation of GABA(B) receptors produces anti-nociceptive effects in a rat model of mechanically induced visceral pain. While CGP7930 was less efficacious than baclofen overall, positive allosteric modulation of GABA(B) receptors may represent a valid approach in the treatment of visceral pain conditions, with the possibility of an improved safety profile compared to full agonism.
    Neuropharmacology 10/2008; 56(2):362-7. · 4.11 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Inflammatory bowel disease (IBD) is a chronic condition with alternating active and quiescent phases of inflammation. Stress has been suggested as a factor triggering a relapse of IBD. We investigated the role of repetitive psychological stress [water avoidance stress (WAS)] in reactivating colonic inflammation in a murine model of dextran sulfate sodium (DSS)-induced chronic colitis. Colitis was induced in C57BL/6 female mice by exposure to 3% DSS (5 days). During chronic inflammation(day 34), mice underwent repetitive WAS (1 h/day/7 days) and were given a sub-threshold concentration of DSS (1%, 5 days)or normal water to drink. At euthanasia (day 40), inflammatory parameters were assessed (colon inflammatory score, levels of inflammatory markers and histology). Mice with chronic colitis exposed to WAS had higher macroscopic and microscopic colonic inflammatory scores and levels of inflammatory markers (mainly IL-1beta, IL12p40 and CCL5) than non-stressed mice. Inflammatory responses were further enhanced by the presence of a sub-threshold concentration of DSS (1%). In mice without chronic inflammation, neither WAS nor 1% DSS, individually or in combination, elicited any inflammation. Hence stress, per se, reactivates a quiescent chronic inflammation, but does not initiate inflammation in healthy mice. Stress should be regarded as an environmental factor triggering IBD relapses in humans.
    Stress (Amsterdam, Netherlands) 08/2008; 11(5):348-62. · 3.21 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Pregabalin, which binds to the alpha2-delta subunit of voltage-gated calcium channels, increased the threshold for pain during colorectal distension (CRD) in irritable bowel syndrome (IBS) patients. We tested the effects of oral pregabalin on the visceral pain-related viscerosomatic and autonomic cardiovascular responses to CRD and colonic compliance in rats. The activity of the abdominal musculature (viscerosomatic response), monitored by electromyography and intracolonic manometry, and changes in blood pressure and heart rate, monitored by telemetry, were assessed simultaneously in conscious rats during CRD. Pregabalin (10-200 micromol kg(-1), p.o.) inhibited dose dependently the viscerosomatic response to phasic, noxious CRD (12 distensions at 80 mm Hg). At 200 mumol kg(-1), pregabalin also reduced the increase in blood pressure and heart rate associated with noxious CRD. Moreover, pregabalin (200 micromol kg(-1), p.o.) reduced the visceromotor response to ascending phasic CRD (10-80 mm Hg) and significantly increased the threshold pressure for response. During phasic CRD (2-20 mm Hg), pregabalin (200 micromol kg(-1), p.o.) increased intracolonic volume, resulting in a shift to the left of the pressure-volume relationship curve, indicative of an increase of compliance. Pregabalin reduced the viscerosomatic and autonomic responses associated with CRD-induced visceral pain and increased colonic compliance in rats. These observations confirm the analgesic activity of pregabalin on visceral pain and support the translational value of the CRD model to humans. Ligands for the alpha2-delta subunit might represent interesting compounds for the treatment of visceral pain disorders, such as IBS.
    British Journal of Pharmacology 07/2008; 155(3):407-16. · 5.07 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The alpha(2)-adrenoceptor agonist, clonidine, modulates colorectal sensorimotor functions in humans and, given intrathecally, has analgesic effects in the colorectal distension (CRD) model in rats. We tested the effects of systemic clonidine on the visceral pain-related viscerosomatic and autonomic cardiovascular responses to CRD and colonic compliance in rats using clinically relevant CRD protocols. The activity of the abdominal musculature (viscerosomatic response), monitored by electromyography and intracolonic manometry, and changes in arterial blood pressure and heart rate, monitored by telemetry, were assessed simultaneously in conscious rats during CRD. Pressure-volume relationships during CRD served as a measure of colonic compliance. Clonidine (50-200 nmol/kg, p.o.) dose-dependently inhibited the viscerosomatic response to phasic, noxious CRD (12 distension at 80 mm Hg). At 200 nmol/kg clonidine also attenuated the increase in blood pressure (70+/-7% inhibition, P<0.05) and heart rate (67+/-16% inhibition, P<0.05) associated to noxious CRD. Similar effects were observed after i.v. administration. Likewise, clonidine (200 nmol/kg, p.o.) reduced the response to ascending phasic CRD (10-80 mm Hg) and significantly increased the threshold pressure for pain-related responses. Clonidine (50 or 150 nmol/kg, i.p.) did not affect the pressure-volume relationship during phasic CRD (2-20 mm Hg). These results show that systemic clonidine, at doses devoid of visible side effects, has analgesic effects in the CRD model of visceral pain in rats without affecting colonic compliance. These observations confirm the analgesic activity of systemic clonidine on visceral pain, support the translational value of the rat CRD model to humans and show that manometry is more sensitive than electromyography detecting pain-related responses.
    European Journal of Pharmacology 07/2008; 591(1-3):243-51. · 2.59 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Metabotropic glutamate 5 receptor (mGluR5) antagonists are effective in animal models of inflammatory and neuropathic pain. The involvement of mGluR5 in visceral pain pathways from the gastrointestinal tract is as yet unknown. We evaluated effects of mGluR5 antagonists on the colorectal distension (CRD)-evoked visceromotor (VMR) and cardiovascular responses in conscious rats, and on mechanosensory responses of mouse colorectal afferents in vitro. Sprague-Dawley rats were subjected to repeated, isobaric CRD (12 x 80 mmHg, for 30s with 5 min intervals). The VMR and cardiovascular responses to CRD were monitored. The mGluR5 antagonists MPEP (1-10 micromol/kg, i.v.) and MTEP (1-3 micromol/kg, i.v.) reduced the VMR to CRD dose-dependently with maximal inhibition of 52+/-8% (p<0.01) and 25+/-11% (p<0.05), respectively, without affecting colonic compliance. MPEP (10 micromol/kg, i.v.) reduced CRD-evoked increases in blood pressure and heart rate by 33+/-9% (p<0.01) and 35+/-8% (p<0.05), respectively. Single afferent recordings were made from mouse pelvic and splanchnic nerves of colorectal mechanoreceptors. Circumferential stretch (0-5 g force) elicited slowly-adapting excitation of action potentials in pelvic distension-sensitive afferents. This response was reduced 55-78% by 10 microM MTEP (p<0.05). Colonic probing (2g von Frey hair) activated serosal splanchnic afferents; their responses were reduced 50% by 10 microM MTEP (p<0.01). We conclude that mGluR5 antagonists inhibit CRD-evoked VMR and cardiovascular changes in conscious rats, through an effect, at least in part, at peripheral afferent endings. Thus, mGluR5 participates in mediating mechanically evoked visceral nociception in the gastrointestinal tract.
    Pain 07/2008; 137(2):295-305. · 5.64 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The pharmacology of tachykinin NK receptors varies greatly among species. The aim of the present study was to assess the role of NK(1) and NK(2) receptors in mediating colorectal distension-evoked nociception and psychological stress-induced defecation in gerbils, a species with human-like NK receptor pharmacology. The effects of the selective NK(1) and NK(2) receptor antagonists, aprepitant and saredutant, on acute (1 h) restraint stress-evoked defecation and plasma adenocorticotropin (ACTH) levels in gerbils were assessed. The effects of antagonists alone or in combination on colorectal distension-evoked visceral pain in conscious gerbils were evaluated using the visceromotor response as a surrogate marker of pain. Restraint stress increased fecal pellet output 2-3-fold and plasma ACTH levels 9-fold. Aprepitant inhibited the defecatory and endocrine responses to stress by 50%, while saredutant completely normalized the same parameters. Visceral pain responses during colorectal distension were attenuated by both compounds, but aprepitant (19+/-6% inhibition, P<0.01) was slightly more effective than saredutant (10+/-9% inhibition, P<0.05). A combination of both compounds resulted in an additive effect (30+/-10% inhibition, P<0.01). The results demonstrate that NK(1) and NK(2) receptors are involved in stress-related colonic motor alterations and visceral pain responses in gerbils and that combined antagonism provides enhanced inhibition of visceral pain responses. This suggests that for therapeutic use in for instance functional gastrointestinal disorders, dual NK(1)/NK(2) receptor antagonists may provide better clinical outcome than selective compounds.
    European Journal of Pharmacology 04/2008; 582(1-3):123-31. · 2.59 Impact Factor
  • V Martinez, S Melgar
    [show abstract] [hide abstract]
    ABSTRACT: Tetrodotoxin-resistant voltage-gated sodium channels subtype 9 (Na(v)1.9) are expressed in small-diameter dorsal root ganglion neurons and have been involved in persistent somatic hyperalgesic responses associated with inflammation. We assessed the role of Na(v)1.9 channels on acute colonic inflammation-induced visceral hypersensitivity in conscious mice, using Na(v)1.9 knockout (KO) mice. Colorectal distension (CRD)-induced visceral pain was assessed in conscious wild-type and Na(v)1.9 KO mice (C57Bl/6 background). The mechanical activity of the abdominal muscles during isobaric colorectal distension was used as a measure of visceral pain. Acute colonic inflammation was induced by intracolonic administration of the toll-like receptor (TLR) 7 activator, R-848 (40mug/animal). CRD was performed 5h later, thereafter animals were euthanized and the colonic content of inflammatory mediators assessed. Normal pain responses were similar in Na(v)1.9 KO and wild-type mice. In wild-type mice, R-848 administration increased the response to phasic CRD by 62% compared with vehicle-treated animals (vehicle: 0.16+/-0.04, R-848: 0.26+/-0.03, n=6-7, P<0.05). However, in Na(v)1.9 KO mice, intracolonic R-848 did not affect the response to CRD (0.11+/-0.02, n=7) compared to animals treated with vehicle (0.17+/-0.03, n=5; P>0.05). After R-848 administration, the colonic content of pro-inflammatory cytokines was increased in similar proportion in wild type and Na(v)1.9 KO mice, suggesting the presence of a similar acute inflammatory reaction in both groups of animals. These results suggest that Na(v)1.9 channels do not significantly contribute to normal visceral pain responses to acute colonic mechanical stimulation but may be important for the development of inflammation-related acute visceral hyperalgesic responses.
    European journal of pain (London, England) 02/2008; 12(7):934-44. · 3.37 Impact Factor
  • Anna Ravnefjord, Erika Rehnström, Vicente Martinez
    Gastroenterology 01/2008; 134(4). · 12.82 Impact Factor
  • Gastroenterology 01/2008; 134(4). · 12.82 Impact Factor
  • Vicente Martinez, Magnus Lindgreen
    Gastroenterology 01/2008; 134(4). · 12.82 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Defective colonic and gastric accommodations have been related to altered viscerosensitivity in irritable bowel syndrome and to functional dyspepsia, respectively. We assessed colonic accommodation in rats with impaired gastric accommodation to determine if altered accommodation can be regarded as a widespread pathophysiological alteration within the gastrointestinal (GI) tract. Colonic accommodation during colorectal distension (CRD) was assessed in Wistar Kyoto rats (WKY), an animal model of impaired gastric accommodation, and in Sprague-Dawley (SD) and Wistar rats, considered normal. CRD (10-80 mmHg)-induced visceral pain responses were also evaluated in the same strains of rats. During gastric distension, WKY rats had lower intra-gastric volume (0.96 +/- 0.22 ml) than SD (1.85 +/- 0.19 ml, P < 0.05) or Wistar rats (2.80 +/- 0.26 ml, P < 0.05), indicating impaired gastric accommodation. In the same animals, pressure-volume curves were constructed during CRD as a measure of colonic accommodation. During short-lasting (1 min) phasic CRD (2-20 mmHg), the pressure-volume curve in WKY rats was displaced to the right compared with SD or Wistar rats, indicative of reduced colonic accommodation (maximal volume: SD, 1.22 +/- 0.05 ml; Wistar, 1.07 +/- 0.04 ml; WKY, 0.87 +/- 0.07 ml; P < 0.01). Pre-treatment with atropine normalised the pressure-volume responses in WKY rats. No differences among strains were observed during the 2-min phasic or ramp-tonic CRD. Visceral pain responses during CRD (10-80 mmHg) were, overall, similar in the three strains, although WKY rats showed lower thresholds for pain (28.0 +/- 4.9 mmHg) than SD (42.3 +/- 6.6 mmHg, P = 0.072) or Wistar rats (48.3 +/- 6.0 mmHg, P < 0.05). WKY rats, although having impaired gastric accommodation, have the ability to fully accommodate the colon to increasing pressures. In WKY rats, impaired accommodation of the smooth muscle might not be a widespread phenomenon along the GI tract but rather a local disturbance.
    Archiv für Experimentelle Pathologie und Pharmakologie 12/2007; 376(3):205-16. · 2.15 Impact Factor

Publication Stats

2k Citations
358.44 Total Impact Points

Institutions

  • 2011
    • Medivir
      Tukholma, Stockholm, Sweden
  • 2007–2009
    • AstraZeneca
      Tukholma, Stockholm, Sweden
  • 2000–2002
    • VA Greater Los Angeles Healthcare System
      Los Angeles, California, United States
    • Spokane VA Medical Center
      Spokane, Washington, United States
  • 1998–2001
    • University of Southern California
      • Department of Medicine
      Los Angeles, CA, United States
    • Polytechnical University of Valencia
      Valenza, Valencia, Spain
    • Laureate Institute for Brain Research
      Tulsa, Oklahoma, United States
  • 1997–2001
    • University of California, Los Angeles
      • • Department of Medicine
      • • Digestive Diseases Research Center
      Los Angeles, CA, United States