Publications (1)8.18 Total impact

  • Source
    K Nihira · Y Ando · T Yamaguchi · Y Kagami · Y Miki · K Yoshida ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Post-translational modification and degradation of proteins by the ubiquitin-proteasome system are key regulatory mechanisms in cellular responses to various stimuli. The NF-kappaB signaling pathway is controlled by the ubiquitin-mediated proteolysis. RelA/p65, which is a main subunit of NF-kappaB, is ubiquitinated for degradation by SOCS-1, but the functional mechanism of its ubiquitination remains poorly understood. In this study we show that phosphorylation of RelA/p65 at Ser276 prevents its degradation by ubiquitin-mediated proteolysis. In contrast, impairment of Ser276 phosphorylation affects constitutive degradation of RelA/p65. Importantly, we identify Pim-1 as a further kinase responsible for the phosphorylation of RelA/p65 at Ser276. Depletion of Pim-1 hinders not only Ser276 phosphorylation but also transactivation of RelA/p65 target genes. We also show that Pim-1 contributes to recruitment of RelA/p65 to kappaB-elements to activate NF-kappaB signalling after TNF-alpha stimulation. In concert with these results, the knockdown of Pim-1 impairs IL-6 production and augments apoptosis by interfering RelA/p65 activation. These findings provide a model in which Pim-1 phosphorylation of RelA/p65 at Ser276 allows defense against ubiquitin-mediated degradation and whereby exerts activation of NF-kappaB signalling.
    Cell death and differentiation 11/2009; 17(4):689-98. DOI:10.1038/cdd.2009.174 · 8.18 Impact Factor