Senji Shirasawa

Fukuoka University, Hukuoka, Fukuoka, Japan

Are you Senji Shirasawa?

Claim your profile

Publications (144)903.45 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: ZFAT is a transcriptional regulator, containing eighteen C2H2-type zinc-fingers and one AT-hook, involved in autoimmune thyroid disease, apoptosis, and immune-related cell survival. We determined the solution structures of the thirteen individual ZFAT zinc-fingers (ZF) and the tandemly arrayed zinc-fingers in the regions from ZF2 to ZF5, by NMR spectroscopy. ZFAT has eight uncommon bulged-out helix-containing zinc-fingers, and six of their structures (ZF4, ZF5, ZF6, ZF10, ZF11, and ZF13) were determined. The distribution patterns of the putative DNA-binding surface residues are different among the ZFAT zinc-fingers, suggesting the distinct DNA sequence preferences of the N-terminal and C-terminal zinc-fingers. Since ZFAT has three to five consecutive tandem zinc-fingers, which may cooperatively function as a unit, we also determined two tandemly arrayed zinc-finger structures, between ZF2 to ZF4 and ZF3 to ZF5. Our NMR spectroscopic analysis detected the interaction between ZF4 and ZF5, which are connected by an uncommon linker sequence, KKIK. The ZF4-ZF5 linker restrained the relative structural space between the two zinc-fingers in solution, unlike the other linker regions with determined structures, suggesting the involvement of the ZF4-ZF5 interfinger linker in the regulation of ZFAT function.
    Journal of Structural and Functional Genomics 03/2015; DOI:10.1007/s10969-015-9196-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zfat, which is a nuclear protein harboring an AT-hook domain and 18-repeats of C2H2 zinc-finger motif, is highly expressed in immune-related tissues, including the thymus and spleen. T cell specific deletion of the Zfat gene by crossing Zfatf/f mice with LckCre mice yields a significant reduction in the number of CD4+CD8+double-positive (DP) thymocytes. However, physiological role for Zfat in T cell development in the thymus remains unknown. Here, we found that Zfat-deficient CD4+CD8+double-positive (DP) thymocytes in Zfatf/f-LckCre mice were susceptible to apoptosis both at an unstimulated state and in response to T cell receptor (TCR)-stimulation. The phosphorylation levels of p38 and JNK were elevated in Zfat-deficient thymocytes at an unstimulated state with an enhanced phosphorylation of ATF2 and with an over-expression of Gadd45α. On the other hand, the activation of JNK in the Zfat-deficient thymocytes, but not p38, was strengthened and prolonged in response to TCR-stimulation. All these results demonstrate that Zfat critically participates in the development of DP thymocytes through regulating the activities of p38 and JNK. J. Cell. Biochem. © 2014 Wiley Periodicals, Inc.
    Journal of Cellular Biochemistry 01/2015; 116(1). DOI:10.1002/jcb.24954 · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent ultrahigh-density tiling array and large-scale transcriptome analysis have revealed that large numbers of long non-coding RNAs (lncRNAs) are transcribed in mammals. Several lncRNAs have been implicated in transcriptional regulation, organization of nuclear structure, and post-transcriptional processing. However, the regulation of expression of lncRNAs is less well understood. Here, we show that the exogenous and endogenous expression of an oncogenic form of small GTPase Ras (called oncogenic Ras) decrease the expression of lncRNA ANRIL (antisense non-coding RNA in the INK4 locus), which is involved in the regulation of cellular senescence. We also show that forced expression of oncogenic Ras increases the expression of lncRNA PANDA (p21 associated ncRNA DNA damage activated), which is involved in the regulation of apoptosis. Microarray analysis demonstrated that expression of multiple lncRNAs fluctuated by forced expression of oncogenic Ras. These findings indicate that oncogenic Ras regulates the expression of a large number of lncRNAs including functional lncRNAs, such as ANRIL and PANDA.
    Cytotechnology 12/2014; DOI:10.1007/s10616-014-9834-9 · 1.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: KRAS gene mutations occur in approximately 40% of colorectal cancers (CRCs) and are associated with resistance to anti-epidermal growth factor receptor antibody therapy. We previously demonstrated that (18)F-FDG accumulation in PET was significantly higher in CRCs with mutated KRAS than in those with wild-type KRAS in a clinical setting. Here, we investigated the mechanisms by which mutated KRAS increased (18)F-FDG accumulation. Using paired isogenic human CRC cell lines that differ only in the mutational status of the KRAS gene, we measured (18)F-FDG accumulation in these cells in vitro and in vivo. We also investigated the roles of proteins that have a function in (18)F-FDG accumulation. Finally, we examined the relationship among mutated KRAS, hypoxia-inducible factor 1α (HIF-1α), and maximum standardized uptake value with 51 clinical CRC samples. In the in vitro experiments, (18)F-FDG accumulation was significantly higher in KRAS-mutant cells than in wild-type controls under normoxic conditions. The expression levels of glucose transporter 1 (GLUT1) and hexokinase type 2 (HK2) were higher in KRAS-mutant cells, and (18)F-FDG accumulation was decreased by knockdown of GLUT1. Hypoxic induction of HIF-1α was higher in KRAS-mutant cells than in wild-type controls; in turn, elevated HIF-1α resulted in higher GLUT1 expression and (18)F-FDG accumulation. In addition, HIF-1α knockdown decreased (18)F-FDG accumulation under hypoxic conditions only in the KRAS-mutant cells. Small-animal PET scans showed in vivo (18)F-FDG accumulation to be significantly higher in xenografts with mutated KRAS than in those with wild-type KRAS. The immunohistochemistry of these xenograft tumors showed that staining of GLUT1 was consistent with that of HIF-1α and pimonidazole. In a retrospective analysis of clinical samples, KRAS mutation exhibited a significantly positive correlation with expressions of GLUT1 and HIF-1α and with maximum standardized uptake value. Mutated KRAS caused higher (18)F-FDG accumulation possibly by upregulation of GLUT1; moreover, HIF-1α additively increased (18)F-FDG accumulation in hypoxic lesions. (18)F-FDG PET might be useful for predicting the KRAS status noninvasively. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
    Journal of Nuclear Medicine 12/2014; 55(12):2038-44. DOI:10.2967/jnumed.114.142927 · 5.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human carcinomas are comprised of complex mixtures of tumor cells that are known to compete indirectly for nutrients and growth factors. Whether tumor cells could also compete directly, for example by elimination of rivals, is not known. Here we show that human cells can directly compete by a mechanism of engulfment called entosis. By entosis, cells are engulfed, or cannibalized while alive, and subsequently undergo cell death. We find that the identity of engulfing ("winner") and engulfed ("loser") cells is dictated by mechanical deformability controlled by RhoA and actomyosin, where tumor cells with high deformability preferentially engulf and outcompete neighboring cells with low deformability in heterogeneous populations. We further find that activated Kras and Rac signaling impart winner status to cells by downregulating contractile myosin, allowing for the internalization of neighboring cells that eventually undergo cell death. Finally, we compute the energy landscape of cell-in-cell formation, demonstrating that a mechanical differential between winner and loser cells is required for entosis to proceed. These data define a mechanism of competition in mammalian cells that occurs in human tumors.Cell Research advance online publication 24 October 2014; doi:10.1038/cr.2014.138.
    Cell Research 11/2014; 24:1299-1310. DOI:10.1038/cr.2014.138 · 11.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Docking protein 2 (Dok2) is an adapter protein which is involved in hematopoiesis. However, it still remains unclear how Dok2 functions in regulation of transcription of hematopoietic genes. To address this issue, we knocked-down Dok2 mRNA in mouse erythroleukemia cells which highly express Dok2 intrinsically.
    Anticancer research 08/2014; 34(8):4561-7. · 1.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously reported the crucial roles of oncogenic Kirsten rat sarcoma viral oncogene homolog (KRAS) in inhibiting apoptosis and disrupting cell polarity via the regulation of phosphodiesterase 4 (PDE4) expression in human colorectal cancer HCT116 cells in three-dimensional cultures (3DC). Herein we evaluated the effects of resveratrol, a PDE4 inhibitor, on the luminal cavity formation and the induction of apoptosis in HCT116 cells.
    Anticancer research 08/2014; 34(8):4551-5. · 1.87 Impact Factor
  • Keiko Doi, Shuhei Ishikura, Senji Shirasawa
    [Show abstract] [Hide abstract]
    ABSTRACT: ZFAT (zinc-finger gene in AITD susceptibility region), originally identified as a candidate susceptibility gene for autoimmune thyroid disease, has been reported to be involved in various cellular processes and several common diseases including multiple sclerosis. Recent studies revealed that mouse Zfat is a novel critical regulator for both thymocyte differentiation and peripheral T-cell homeostasis. Zfat deficiency at early thymocyte developmental stages results in the inhibition of the development of CD4(+)CD8(+) thymocytes with an impaired positive selection. Zfat deficiency in peripheral T-cells results in a reduction in the number of T-cells with decreased expression of the interleukin-7 receptor-α (IL-7Rα) that is critical for T-cell homeostasis. In addition, T-cell antigen receptor stimulation-induced responses of Zfat-deficient T-cells are also impaired, with reduced IL-2Rα expression. This review highlights and discusses the roles of Zfat in thymocyte differentiation of T-cells and in the homeostasis of naive T-cells with recent work.
    Anticancer research 08/2014; 34(8):4489-4495. · 1.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There are currently no approved targeted therapies for advanced KRAS mutant (KRASMT) colorectal cancer (CRC). Using a unique systems biology approach, we identified JAK1/2-dependent activation of STAT3 as the key mediator of resistance to MEK inhibitors in KRASMT CRC in vitro and in vivo. Further analyses identified acute increases in c-MET activity following treatment with MEK inhibitors in KRASMT CRC models, which was demonstrated to promote JAK1/2-STAT3-mediated resistance. Furthermore, activation of c-MET following MEK inhibition was found to be due to inhibition of the ERK-dependent metalloprotease ADAM17, which normally inhibits c-MET signaling by promoting shedding of its endogenous antagonist, soluble "decoy" MET. Most importantly, pharmacological blockade of this resistance pathway with either c-MET or JAK1/2 inhibitors synergistically increased MEK-inhibitor-induced apoptosis and growth inhibition in vitro and in vivo in KRASMT models, providing clear rationales for the clinical assessment of these combinations in KRASMT CRC patients.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The KRAS oncogene influences angiogenesis, metastasis and chemoresistance in colorectal cancers (CRCs), and these processes are all enhanced in hypoxic conditions. To define functional activities of mutant KRAS in a hypoxic microenvironment, we first performed cDNA microarray experiments in isogenic DKs5 and DKO3 colon cancer cell lines that differ only by their expression of mutant KRAS (K-ras(D13) ). Adrenomedullin (ADM) was identified as one of the most significantly upregulated genes in DKs5 cells that express the KRAS oncogene in hypoxia (3.2-fold, p = 1.47 × 10(-5) ). Ectopic expression of mutant KRAS (K-ras(V12) ) in Caco-2 cells (K-ras(WT) ) induced ADM, whereas selective knockdown of mutant KRAS alleles (K-ras(D13) or K-ras(V12) ) in HCT116, DLD1 and SW480 colon cancer cells suppressed the expression of ADM in hypoxia. Knockdown of ADM in colon tumor xenografts blocked angiogenesis and stimulated apoptosis, resulting in tumor suppression. Furthermore, ADM also regulated colon cancer cell invasion in vitro. Among 56 patients with CRC, significantly higher expression levels of ADM were observed in samples harboring a KRAS mutation. Collectively, ADM is a new target of oncogenic KRAS in the setting of hypoxia. This observation suggests that therapeutic targets may differ depending upon the specific tumor microenvironment.
    International Journal of Cancer 05/2014; 134(9):2041-50. DOI:10.1002/ijc.28542 · 6.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cetuximab is a chimeric IgG1 monoclonal antibody (mAb) that targets the extracellular domain of epidermal growth factor receptor (EGFR). Oncogenic KRAS mutations in tumors have been shown to be a negative predictor of the response of colorectal cancer (CRC) to cetuximab treatment. Cetuximab exerts its therapeutic effects through several mechanisms including antibody-dependent cellular cytotoxicity (ADCC). However, the influence of KRAS mutations on cetuximab-mediated ADCC is not fully understood. Here, we investigated cetuximab-mediated ADCC in two pairs of isogenic CRC cells with or without a KRAS mutation. Peripheral blood mononuclear cells (PBMCs) from healthy volunteers and NK92, a natural killer (NK) cell line that exogenously expresses FcγRIIIa (CD16a), were used as effector cells. In an ADCC assay, perforin-dependent target cell lysis was not affected by the KRAS mutation status. On the other hand, perforin-independent ADCC was observed only in CRC cells with wild-type KRAS, but not in cells with mutant KRAS. Neutralizing experiments revealed that the Fas-Fas ligand (FasL) interaction was responsible for the induction of apoptosis and perforin-independent ADCC. Furthermore, the presence of effector cells clearly enhanced the growth-inhibitory effect of cetuximab only in CRC cells with wild-type KRAS, but not in those with mutant KRAS. These findings suggest that ADCC is an important mode of action of cetuximab and that KRAS mutation impairs the therapeutic effect exerted by cetuximab-mediated ADCC. © 2013 Wiley Periodicals, Inc.
    International Journal of Cancer 05/2014; 134(9). DOI:10.1002/ijc.28550 · 6.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: KRAS is mutated in ∼40% of colorectal cancer (CRC), and there are limited effective treatments for advanced KRAS mutant CRC. Therefore, it is crucial that downstream mediators of oncogenic KRAS continue to be studied. We identified p190RhoGAP as being phosphorylated in the DLD1 CRC cell line, which expresses a heterozygous KRAS G13D allele, and not in DKO4 in which the mutant allele has been deleted by somatic recombination. We found that a ubiquitous binding partner of p190RhoGAP, p120RasGAP (RasGAP), is expressed in much lower levels in DKO4 cells compared to DLD1, and this expression is regulated by KRAS. Rescue of RasGAP expression in DKO4 rescued Rho pathway activation and partially rescued tumorigenicity in DKO4 cells, indicating that the combination of mutant KRAS and RasGAP expression is crucial to these phenotypes. We conclude that RasGAP is an important effector of mutant KRAS in CRC.
    PLoS ONE 01/2014; 9(1):e86103. DOI:10.1371/journal.pone.0086103 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human ZFAT gene was originally identified as a susceptibility gene for autoimmune thyroid disease. Mouse Zfat is a critical transcriptional regulator for primitive hematopoiesis and required for peripheral T cell homeostasis. However, its physiological roles in T cell development remain poorly understood. Here, we generated Zfat (f/f)-LckCre mice and demonstrated that T cell-specific Zfat-deletion in Zfat (f/f)-LckCre mice resulted in a reduction in the number of CD4(+)CD8(+)double-positive (DP) cells, CD4(+)single positive cells and CD8(+)single positive cells. Indeed, in Zfat (f/f)-LckCre DP cells, positive selection was severely impaired. Defects of positive selection in Zfat-deficient thymocytes were not restored in the presence of the exogenous TCR by using TCR-transgenic mice. Furthermore, Zfat-deficient DP cells showed a loss of CD3ζ phosphorylation in response to T cell antigen receptor (TCR)-stimulation concomitant with dysregulation of extracellular signal-related kinase (ERK) and early growth response protein (Egr) activities. These results demonstrate that Zfat is required for proper regulation of the TCR-proximal signalings, and is a crucial molecule for positive selection through ERK and Egr activities, thus suggesting that a full understanding of the precise molecular mechanisms of Zfat will provide deeper insight into T cell development and immune regulation.
    PLoS ONE 10/2013; 8(10):e76254. DOI:10.1371/journal.pone.0076254 · 3.53 Impact Factor
  • Source
    Toshiyuki Tsunoda, Senji Shirasawa
    [Show abstract] [Hide abstract]
    ABSTRACT: A zinc-finger gene in autoimmune thyroid disease susceptibility region (ZFAT) was originally identified as a highly conserved immune-related transcriptional regulator containing one adenosine-thymidine (AT)-hook and 18 C2H2-type zinc-finger domains. Subsequently, roles of ZFAT in development, primitive haematopoiesis, angiogenesis, immune responses and several common diseases, such as multiple sclerosis, hypertension and cancer, have been demonstrated. Previously, we recorded a ZFAT protein expression in MOLT-4 human acute T-lymphoblastic leukaemia cells, while ZFAT knockdown activated caspases and induced apoptosis in these cells. Hence, the precise functions of ZFAT are of particular interest in cancer research. In this article, we have reviewed investigations on the roles of ZFAT in haematopoietic and angiogenesis, and discussed the possible involvement of ZFAT in haematopoietic malignancies.
    Anticancer research 07/2013; 33(7):2833-7. · 1.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported that Tespa1 (thymocyte-expressed, positive selection-associated gene 1) protein expressed in lymphocytes physically interacts with IP3R (Inositol 1,4,5-trisphosphate receptor), a Ca(2+) channel protein spanning endoplasmic reticulum (ER) membrane. However, the biochemical characterization of Tespa1 protein remains unknown. In this study, we have found that Tespa1 protein was posttranslationally modified upon intracellular Ca(2+) increase in thymocytes. Through the analyses using various inhibitors, store-operated Ca(2+) entry (SOCE) was found to be an essential factor for the Tespa1 protein modification induced by TCR-stimulation. Remarkably, the Ca(2+)-dependent Tespa1 protein modification was restored by in vitro protein phosphatase treatment, indicating that this modification was due to phosphorylation. Moreover, we examined whether Ca(2+)-dependent phosphorylation of Tespa1 protein would affect the physical association between Tespa1 and IP3R proteins, revealing that physical association of these proteins is maintained regardless of the presence or absence of phosphorylation of Tespa1. In addition, KRAP protein which represents substantial amino acid sequence homology to Tespa1 was also posttranslationally phosphorylated by intracellular Ca(2+) increase in HCT116 human colon cancer cells and HEK293 human embryonic kidney cells, suggesting that common signaling mechanism(s) may contribute to the molecular modification of Tespa1 and KRAP in different cellular processes. All these results suggested a novel molecular modification of Tespa1 and the existence of the regulatory pathway that SOCE affects the Tespa1-IP3R molecular complex.
    Biochemical and Biophysical Research Communications 03/2013; DOI:10.1016/j.bbrc.2013.02.128 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulation of intracellular Ca(2+) concentration is critical in numerous biological processes. Inositol 1,4,5-trisphosphate receptor (IP3R) functions as the Ca(2+) release channel on endoplasmic reticulum (ER) membranes. Much attention has been dedicated to mitochondrial Ca(2+) uptake via mitochondria-associated ER membranes (MAM) which is involved in intracellular Ca(2+) homeostasis; however, the molecular mechanisms that link the MAM to mitochondria still remain elusive. We previously reported that Tespa1 (thymocyte-expressed, positive selection-associated gene 1) expressed in lymphocytes physically interacts with IP3R. In this study, we first performed double-immunocytochemical staining of Tespa1 with a mitochondrial marker or an ER marker on an acute T lymphoblastic leukemia cell line, Jurkat cells, by using anti-ATP synthase or anti-calnexin antibody, respectively, and demonstrated that Tespa1 was localized very close to mitochondria and the Tespa1 localization was overlapped with restricted portion of ER. Next, we examined the effects of Tespa1 on the T cell receptor (TCR) stimulation-induced Ca(2+) flux by using Ca(2+) imaging in Jurkat cells. Reduction of Tespa1 protein by Tespa1-specific siRNA diminished TCR stimulation-induced Ca(2+) flux into both mitochondria and cytoplasm through the analyses of the mitochondrial Ca(2+) indicator (Rhod-2) and the cytoplasmic Ca(2+) indicator (Fluo-4), respectively. Furthermore, co-immunoprecipitation assay in HEK293 cells revealed that exogenous Tespa1 protein physically interacted with a MAM-associated protein, GRP75 (glucose-regulated protein 75), but not with an outer mitochondrial membrane protein, VDAC1 (voltage-dependent anion channel 1). All these results suggested that Tespa1 will participate in the molecular link between IP3R-mediated Ca(2+) release and mitochondrial Ca(2+) uptake in the MAM compartment.
    Biochemical and Biophysical Research Communications 03/2013; DOI:10.1016/j.bbrc.2013.02.099 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is one of several pro-angiogenic factors, and represents a possible therapeutic target for patients with triple-negative breast cancer (TNBC). However, the role of HB-EGF in promoting tumor aggressiveness in TNBC remains unclear. In order to investigate specific genes and pathways involved in TNBC tumorigenesis, we profiled gene expression changes in two TNBC cell lines under two-dimensional culture (2DC) and three-dimensional culture (3DC) and in a tumor xenograft model. We identified simultaneous upregulation of HB-EGF, vascular endothelial growth factor A (VEGFA) and angiopoietin-like 4 (ANGPTL4) in 3DC and tumor xenografts, compared with 2DC. We show that HB-EGF regulates the expression of VEGFA or ANGPTL4 via transcriptional regulation of hypoxia inducible factor-1 alpha and nuclear factor kappa B. Furthermore, suppression of VEGFA or ANGPTL4 expression enhanced HB-EGF expression, highlighting a unique regulatory loop underlying this angiogenesis network. Targeted knockdown of HB-EGF significantly suppressed tumor formation in a TNBC xenograft model, compared with individual knockdown of either VEGFA or ANGPTL4, by reducing the expression of both VEGFA and ANGPTL4. In patients with TNBC, VEGFA or ANGPTL4 expression was also significantly correlated with HB-EGF expression. Low concentrations of exogenously added HB-EGF strongly activated the proliferation of endothelial cells, tube formation and vascular permeability in blood vessels, in a similar fashion to high doses of VEGFA and ANGPTL4. Taken together, these results suggest that HB-EGF plays a pivotal role in the acquisition of tumor aggressiveness in TNBC by orchestrating a molecular hierarchy regulating tumor angiogenesis.
    Molecular Cancer Research 02/2013; 11(5). DOI:10.1158/1541-7786.MCR-12-0428 · 4.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to assess the consequences of endogenous mutant KRas, we analyzed the signaling and biological properties of a small panel of isogenic cell lines. These include the cancer cell lines DLD1, HCT116 and Hec1A, in which either the WT or mutant KRas allele has been disrupted, and SW48 colorectal cancer cells and HMECs in which a single copy of mutant KRas was introduced at its endogenous genomic locus. We find that single copy mutant KRas causes surprisingly modest activation of downstream signaling to ERK and Akt. In contrast, a negative feedback signaling loop to EGFR and NRas occurs in some, but not all, of these cell lines. Mutant KRas also had relatively minor effects on cell proliferation and cell migration, but more dramatic effects on cell transformation as assessed by growth in soft agar. Surprisingly, knockout of the wild type KRas allele consistently increased growth in soft agar, suggesting tumor suppressive properties of this gene under these conditions. Finally, we examined the effects of single copy mutant KRas on global gene expression. While transcriptional programs triggered by mutant KRas were generally quite distinct in the different cell lines, there was a small number of genes that were consistently overexpressed, and these could be used to monitor KRas inhibition in a panel of human tumor cell lines. We conclude that there are conserved components of mutant KRas signaling and phenotypes, but that many depend on cell context and environmental cues.
    Journal of Biological Chemistry 11/2012; 288(4). DOI:10.1074/jbc.M112.394130 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adult T-cell leukemia-lymphoma (ATL) is an aggressive peripheral T-cell neoplasm that develops after long-term infection with human T-cell leukemia virus (HTLV-1). SIRT1, a nicotinamide adenine dinucleotide(+)-dependent histone/protein deacetylase, plays a crucial role in various physiological processes, such as aging, metabolism, neurogenesis and apoptosis, owing to its ability to deacetylate numerous substrates, such as histone and NF-κB, which is implicated as an exacerbation factor in ATL. Here, we assessed how SIRT1 is regulated in primary ATL cells and leukemic cell lines. SIRT1 expression in ATL patients was significantly higher than that in healthy controls, especially in the acute type. Sirtinol, a SIRT1 inhibitor, induced significant growth inhibition or apoptosis in cells from ATL patients and leukemic cell lines, especially HTLV-1-related cell lines. Sirtinol-induced apoptosis was mediated by activation of the caspase family and degradation of SIRT1 in the nucleus. Furthermore, SIRT1 knockdown by SIRT1-specific small interfering RNA caused apoptosis via activation of caspase-3 and PARP in MT-2 cells, HTLV-1-related cell line. These results suggest that SIRT1 is a crucial antiapoptotic molecule in ATL cells and that SIRT1 inhibitors may be useful therapeutic agents for leukemia, especially in patients with ATL.
    International Journal of Cancer 11/2012; 131(9):2044-55. DOI:10.1002/ijc.27481 · 6.20 Impact Factor
  • Source
    Takahiro Fujimoto, Senji Shirasawa
    [Show abstract] [Hide abstract]
    ABSTRACT: KRAS-induced actin-interacting protein (KRAP), originally identified as one of the deregulated genes expressed in colorectal cancer, participates under physiological conditions in the regulation of systemic energy homeostasis and of the exocrine system. We have recently found that KRAP is a molecule associated with inositol 1,4,5-trisphosphate receptor (IP3R) and is critical for the proper subcellular localization of IP3R in the liver and the pancreas. However, the expression of KRAP and its precise function in other tissues remain elusive. In this study, we aimed to identify the KRAP-expressing cells in mouse stomach and kidneys and to examine the relevance of KRAP expression in the regulation of IP3R localization in these tissues. In the stomach, double immunohistochemical staining for KRAP and IP3R demonstrated that KRAP was expressed along with the apical regions in the mucous cells and the chief cells, and IP3R3 was dominantly co-localized with KRAP in these cells. Furthermore, IP3R2 was also co-localized with IP3R3 in the chief cells. It is of note that the proper localization of IP3R3 and IP3R2 in the chief cells and of IP3R3 in the mucous cells were significantly abrogated in KRAP-deficient mice. In the kidneys, KRAP was expressed in both the apical and the basal regions of the proximal tubular cells. Intriguingly, KRAP deficiency abrogated the localization of IP3R1 in the proximal tubular cells. Finally, co-immunoprecipitation study in the stomachs and the kidneys validated the physical association of KRAP with IP3Rs. These findings demonstrate that KRAP physically associates with IP3Rs and regulates the proper localization of IP3Rs in the mucous cells and the chief cells of the stomach and in the proximal tubular cells of the kidneys.
    International Journal of Molecular Medicine 09/2012; 30(6). DOI:10.3892/ijmm.2012.1126 · 1.88 Impact Factor

Publication Stats

5k Citations
903.45 Total Impact Points

Institutions

  • 2007–2015
    • Fukuoka University
      • Faculty of Medicine
      Hukuoka, Fukuoka, Japan
  • 2007–2011
    • Dalhousie University
      • • Department of Pediatrics
      • • Atlantic Research Centre
      Halifax, Nova Scotia, Canada
  • 2003–2007
    • Montefiore Medical Center
      • Department of Oncology
      New York City, NY, United States
    • Albert Einstein Medical Center
      Philadelphia, Pennsylvania, United States
  • 2005
    • Virginia Commonwealth University
      • Department of Radiation Oncology
      Richmond, VA, United States
    • Harvard Medical School
      • Department of Neurobiology
      Boston, MA, United States
  • 2000
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
  • 1997–1999
    • Kyushu University
      • • Division of Cancer Genetics
      • • Medical Institute of Bioregulation - MIB Hospital
      Hukuoka, Fukuoka, Japan