Steve Rawlings

University of Oxford, Oxford, England, United Kingdom

Are you Steve Rawlings?

Claim your profile

Publications (271)1140.42 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the evolution of accretion activity is fundamental to our understanding of how galaxies form and evolve over the history of the Universe. We analyse a complete sample of 27 radio galaxies which includes both high-excitation (HEGs) and low excitation galaxies (LEGs), spanning a narrow redshift range of 0.9 < z < 1.1 and covering a factor of ~1000 in radio luminosity. Using data from the Spitzer Space Telescope combined with ground-based optical and near-infrared imaging, we show that the host galaxies have masses in the range of 10.7 < log (M /M_sun) < 12.0 with HEGs and LEGs exhibiting no difference in their mass distributions. We also find that HEGs accrete at significantly higher rates than LEGs, with the HEG/LEG division lying at an Eddington ratio of ~0.04, which is in excellent agreement with theoretical predictions of where the accretion rate becomes radiatively inefficient, thus supporting the idea of HEGs and LEGs being powered by different modes of accretion. Our study also shows that at least up to L_151MHz ~3x10^27 W /Hz /sr, HEGs and LEGs are indistinguishable in terms of their radio properties. From this result we infer that, at least for the lower radio luminosity range, another factor besides accretion rate must play an important role in the process of triggering jet activity.
    Monthly Notices of the Royal Astronomical Society 11/2014; 447(2). · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We model a 21 cm intensity mapping survey in the redshift range 0.01<z<1.5 designed to simulate the skies as seen by future radio telescopes such as the Square Kilometre Array (SKA), including instrumental noise and Galactic foregrounds. In our pipeline, we remove the introduced Galactic foregrounds with a fast independent component analysis (fastica) technique. We present the power spectrum of the large-scale matter distribution, C(l), before and after the application of this foreground removal method and calculate the resulting systematic errors. We attempt to reduce systematics in the foreground subtraction by optimally masking the maps to remove high foregrounds in the Galactic plane. Our simulations show a certain level of bias remains in the power spectrum at all scales l<400. At large-scales l<30 this bias is particularly significant. We measure the impact of these systematic effects in two different ways: firstly we fit cosmological parameters to the broadband shape of the power spectrum and secondly we extract the position of the Baryon Acoustic Oscillations (BAO). In the first analysis, we find that the systematics introduce an significant shift in the best fit cosmological parameters at the 2 to 3 sigma level which depends on the masking and noise levels. However, cosmic distances can be recovered in an unbiased way after foreground removal at all simulated redshifts by fitting the BAOs in the power spectrum. We conclude that further advances in foreground removal are needed in order to recover unbiased information from the broadband shape of the power spectrum, however, intensity mapping experiments will be a powerful tool for mapping cosmic distances across a wide redshift range.
    Monthly Notices of the Royal Astronomical Society 10/2013; 441(4). · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An analysis of 44 GHz VLA observations of the z = 1.574 radio-loud quasar 3C318 has revealed emission from the redshifted J = 1 - 0 transition of the CO molecule and spatially resolved the 6.3 kpc radio jet associated with the quasar at 115 GHz rest-frame. The continuum-subtracted line emitter is spatially offset from the quasar nucleus by 0.33" (2.82 kpc in projection). This spatial offset has a significance of >8-sigma and, together with a previously published -400 km/s velocity offset measured in the J = 2 - 1 CO line relative to the systemic redshift of the quasar, rules out a circumnuclear starburst or molecular gas ring and suggests that the quasar host galaxy is either undergoing a major merger with a gas-rich galaxy or is otherwise a highly disrupted system. If the merger scenario is correct then the event may be in its early stages, acting as the trigger for both the young radio jets in the quasar and a starburst in the merging galaxy. The total molecular gas mass in the spatially offset line emitter as measured from the ground-state CO line M_H2 = 3.7 (+/-0.4) x 10^10 (alpha_CO/0.8) M_solar. Assuming that the line-emitter can be modelled as a rotating disk, an inclination-dependent upper limit is derived for its dynamical mass M_dyn sin^2(i) < 3.2 x 10^9 M_solar, suggesting that for M_H2 to remain less than M_dyn the inclination angle must be i < 16 degrees. The far infrared and CO luminosities of 246 extragalactic systems are collated from the literature for comparison. The high molecular gas content of 3C318 is consistent with that of the general population of high redshift quasars and sub-millimetre galaxies.
    Monthly Notices of the Royal Astronomical Society 08/2013; 435(4). · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This is the first paper in a series that present a multi-wavelength analysis of the archetype Ultra-Luminous InfraRed Galaxy (ULIRG) IRAS FSC10214+4724, a gravitationally lensed, starburst/AGN at z=2.3. Here we present a new lens model and spatially-resolved radio data, as well as a deep HST F160W map. The lens modelling employs a Bayesian Markov Chain Monte Carlo algorithm with extended-source, forward ray-tracing. Using these high resolution HST, MERLIN and VLA maps, the algorithm allows us to constrain the level of distortion to the continuum spectral energy distribution resulting from emission components with differing magnification factors, due to their size and proximity to the caustic. Our lens model finds the narrow line region (NLR), and by proxy the active nucleus, is preferentially magnified. This supports previous claims that preferential magnification could mask the expected polycyclic aromatic hydrocarbon spectral features in the Spitzer mid-infrared spectrum which roughly trace the star-forming regions. Furthermore, we show the arc-to-counter-image flux ratio is not a good estimate of the magnification in this system, despite its common use in the IRAS FSC10214+4724 literature. Our lens modelling suggests magnifications of \mu ~ 15-20+-2 for the HST F814W, MERLIN 1.7 GHz and VLA 8 GHz maps, significantly lower than the canonical values of \mu = 50-100 often used for this system. Systematic errors such as the dark matter density slope and co-location of stellar and dark matter centroids dominate the uncertainties in the lens model at the 40 percent level.
    Monthly Notices of the Royal Astronomical Society 07/2013; 430(1). · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report 1.7 GHz Very Long Baseline Interferometry (VLBI) observations of IRAS F10214+4724, a lensed z=2.3 obscured quasar with prodigious star formation. We detect what we argue to be the obscured active nucleus with an effective angular resolution of < 50 pc at z = 2.3 . The S_{1.7} = 210 micro-Jy (9-\sigma) detection of this unresolved source is located within the HST rest-frame ultraviolet/optical arc, however, >~100 mas northward of the arc centre of curvature. This leads to a source plane inversion that places the European VLBI Network detection to within milli-arcseconds of the modelled cusp caustic, resulting in a very large magnification (\mu ~70), over an order of magnitude larger than the CO (1-0) derived magnification of a spatially resolved JVLA map, using the same lens model. We estimate the quasar bolometric luminosity from a number of independent techniques and with our X-ray modelling find evidence that the AGN may be close to Compton-thick, with an intrinsic bolometric luminosity log(L_{bol,QSO} / L_sun) = 11.34 +- 0.27 dex. We make the first black hole mass estimate of IRAS F10214+4724 and find log(M_{BH}/M_sun) = 8.36 +- 0.56 which suggests a low black hole accretion rate (\lambda = \dot{M} / \dot{M}_{Edd} ~ 3\pm^7_2 percent). We find evidence for a M_{BH}/M_{spheroid} ratio that is 1-2 orders of magnitude larger than that of submillimetre galaxies (SMGs) at z~2. At face value, this suggests IRAS F10214+4724 has undergone a different evolutionary path compared to SMGs at the same epoch. A primary result of this work is the demonstration that emission regions of differing size and position can undergo significantly different magnification boosts (> 1 dex) and therefore distort our view of high-redshift, gravitationally lensed galaxies.
    Monthly Notices of the Royal Astronomical Society 07/2013; 434(4). · 5.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present JVLA observations of the cold (CO (1-0)) molecular gas in IRAS F10214+4724, a lensed ULIRG at z=2.3 with an obscured active nucleus. The galaxy is spatially and spectrally well-resolved in the CO (1-0) emission line. A CO (1-0) counter-image is detected at the 3-sigma level. Five of the 42 km/s channels (with >5-sigma detections) are mapped back into the source plane and their total magnification posterior PDFs sampled. This reveals a roughly linear arrangement, tentatively a rotating disk. We derive a molecular gas mass of M_gas = 1.2 +- 0.2 x 10^10 M_sun, assuming a ULIRG L_{CO}-to-M_{gas} conversion ratio of \alpha = 0.8 M_sun / (K km/s pc^2) that agrees well with the derived range of \alpha = 0.3 - 1.3 for separate dynamical mass estimates at assumed inclinations of i = 90 - 30 degrees. Based on the AGN and CO (1-0) peak emission positions and the lens model, we predict a distortion of the CO Spectral Line Energy Distribution (SLED) where higher order J lines that may be partially excited by AGN heating will be preferentially lensed owing to their smaller solid angles and closer proximity to the AGN and therefore the cusp of the caustic. Comparison with other lensing inversion results shows that the narrow line region and AGN radio core in IRAS F10214+4724 are preferentially lensed by a factor >~ 3 and 11 respectively, relative to the molecular gas emission. This distorts the global continuum emission Spectral Energy Distribution (SED) and suggests caution in unsophisticated uses of IRAS F10214+4724 as an archetype high-redshift ULIRG. We explore two Large Velocity Gradient (LVG) models, incorporating spatial CO (1-0) and (3-2) information and present tentative evidence for an extended, low excitation cold gas component that implies that the total molecular gas mass in IRAS F10214+4724 is a factor >~2 greater than that calculated using spatially unresolved CO observations.
    Monthly Notices of the Royal Astronomical Society 07/2013; 434(1). · 5.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We describe a 325-MHz survey, undertaken with the Giant Metrewave Radio Telescope (GMRT), which covers a large part of the three equatorial fields at 9, 12 and 14.5 h of right ascension from the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS) in the area also covered by the Galaxy And Mass Assembly survey (GAMA). The full dataset, after some observed pointings were removed during the data reduction process, comprises 212 GMRT pointings covering ~90 deg^2 of sky. We have imaged and catalogued the data using a pipeline that automates the process of flagging, calibration, self-calibration and source detection for each of the survey pointings. The resulting images have resolutions of between 14 and 24 arcsec and minimum rms noise (away from bright sources) of ~1 mJy/beam, and the catalogue contains 5263 sources brighter than 5 sigma. We investigate the spectral indices of GMRT sources which are also detected at 1.4 GHz and find them to agree broadly with previously published results; there is no evidence for any flattening of the radio spectral index below S_1.4=10 mJy. This work adds to the large amount of available optical and infrared data in the H-ATLAS equatorial fields and will facilitate further study of the low-frequency radio properties of star formation and AGN activity in galaxies out to z~1.
    Monthly Notices of the Royal Astronomical Society 07/2013; 435(1). · 5.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We perform a stacking analysis of Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) data in order to obtain isothermal dust temperatures and rest-frame luminosities at 250 μm (L250), for a well-defined sample of 1599 radio sources over the H-ATLAS Phase 1/Galaxy and Mass Assembly (GAMA) area. The radio sample is generated using a combination of NRAO VLA Sky Survey data and K-band United Kingdom Infrared Telescope Deep Sky Survey-Large Area Survey data, over the redshift range 0.01 < z < 0.8. The far-infrared (FIR) properties of the sample are investigated as a function of 1.4-GHz luminosity, redshift, projected radio-source size and radio spectral index. In order to search for stellar-mass-dependent relations, we split the parent sample into those sources which are below and above 1.5 LK^{*}. After correcting for stellar mass and redshift, we find no relation between the 250-μm luminosity and the 1.4-GHz radio luminosity of radio active galactic nuclei. This implies that a galaxy's nominal radio luminosity has little or no bearing on the star formation rate (SFR) and/or dust mass content of the host system, although this does not mean that other variables (e.g. radio source size) related to the jets do not have an effect. The L250 of both the radio detected and non-radio-detected galaxies (defined as those sources not detected at 1.4 GHz but detected in the Sloan Digital Sky Survey with r' < 22) rises with increasing redshift. Compact radio sources (<30 kpc) are associated with higher 250 μm luminosities and dust temperatures than their more extended (>30 kpc) counterparts. The higher dust temperature suggests that this may be attributed to enhanced SFRs in compact radio galaxies, but whether this is directly or indirectly due to radio activity (e.g. jet-induced or merger-driven star formation) is as yet unknown. For matched samples in LK and g'-r', sub-1.5 LK^{*} and super-1.5 LK^{*} radio-detected galaxies have 0.89±0.18 and 0.49±0.12 times the 250 μm luminosity of their non-radio-detected counterparts. Thus, while no difference in L250 is observed in sub-1.5 LK^{*} radio-detected galaxies, a strong deficit is observed in super-1.5 LK^{*} radio-detected galaxies. We explain these results in terms of the hotter, denser and richer halo environments massive radio galaxies maintain and are embedded in. These environments are expected to quench the cold gas and dust supply needed for further star formation and therefore dust production. Our results indicate that all massive radio galaxies (>1.5 LK^{*}) may have systematically lower FIR luminosities (˜25 per cent) than their colour-matched non-radio-detected counterparts. Finally, no relation between radio spectral index and L250 is found for the subset of 1.4-GHz radio sources with detections at 330 MHz.
    Monthly Notices of the Royal Astronomical Society 06/2013; 432(1):609-625. · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: LOFAR, the LOw-Frequency ARray, is a new-generation radio interferometer constructed in the north of the Netherlands and across europe. Utilizing a novel phased-array design, LOFAR covers the largely unexplored low-frequency range from 10-240 MHz and provides a number of unique observing capabilities. Spreading out from a core located near the village of Exloo in the northeast of the Netherlands, a total of 40 LOFAR stations are nearing completion. A further five stations have been deployed throughout Germany, and one station has been built in each of France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR achieves unparalleled sensitivity and angular resolution in the low-frequency radio regime. The LOFAR facilities are jointly operated by the International LOFAR Telescope (ILT) foundation, as an observatory open to the global astronomical community. LOFAR is one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. LOFAR's new capabilities, techniques and modus operandi make it an important pathfinder for the Square Kilometre Array (SKA). We give an overview of the LOFAR instrument, its major hardware and software components, and the core science objectives that have driven its design. In addition, we present a selection of new results from the commissioning phase of this new radio observatory.
    Astronomy and Astrophysics 05/2013; · 4.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many of the spectra presented here were obtained as part of the European Southern Observatory (ESO) programme P074.A-0333, undertaken using the Visible Multi-Object Spectrograph (VIMOS) instrument on UT3/Melipal, VIMOS. Several observational campaigns have obtained spectra of objects within the Subaru/XMM-Newton Deep Field (SXDF), and Paper II (Vardoulaki et al., 2008MNRAS.387..505V) presented spectra for 28 of the brightest 37 radio sources, obtained from a variety of sources. The near-infrared data used here come from the third data release (DR3) of the UKIRT (United Kingdom Infrared telescope) Infrared Deep Sky Survey. The optical data in the UDS come from the SXDF, which comprises five separate Suprime-Cam pointings. (1 data file).
    VizieR Online Data Catalog. 03/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated mode changes across the electromagnetic spectrum is therefore key to understanding the physical relationship among the emission sites. Through simultaneous observations, we detected synchronous switching in the radio and x-ray emission properties of PSR B0943+10. When the pulsar is in a sustained radio-"bright" mode, the x-rays show only an unpulsed, nonthermal component. Conversely, when the pulsar is in a radio-"quiet" mode, the x-ray luminosity more than doubles and a 100% pulsed thermal component is observed along with the nonthermal component. This indicates rapid, global changes to the conditions in the magnetosphere, which challenge all proposed pulsar emission theories.
    Science 01/2013; 339(6118):436-439. · 31.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims: This paper discusses the spectral occupancy for performing radio astronomy with the Low-Frequency Array (LOFAR), with a focus on imaging observations. Methods: We have analysed the radio-frequency interference (RFI) situation in two 24-h surveys with Dutch LOFAR stations, covering 30-78 MHz with low-band antennas and 115-163 MHz with high-band antennas. This is a subset of the full frequency range of LOFAR. The surveys have been observed with a 0.76 kHz / 1 s resolution. Results: We measured the RFI occupancy in the low and high frequency sets to be 1.8% and 3.2% respectively. These values are found to be representative values for the LOFAR radio environment. Between day and night, there is no significant difference in the radio environment. We find that lowering the current observational time and frequency resolutions of LOFAR results in a slight loss of flagging accuracy. At LOFAR's nominal resolution of 0.76 kHz and 1 s, the false-positives rate is about 0.5%. This rate increases approximately linearly when decreasing the data frequency resolution. Conclusions: Currently, by using an automated RFI detection strategy, the LOFAR radio environment poses no perceivable problems for sensitive observing. It remains to be seen if this is still true for very deep observations that integrate over tens of nights, but the situation looks promising. Reasons for the low impact of RFI are the high spectral and time resolution of LOFAR; accurate detection methods; strong filters and high receiver linearity; and the proximity of the antennas to the ground. We discuss some strategies that can be used once low-level RFI starts to become apparent. It is important that the frequency range of LOFAR remains free of broadband interference, such as DAB stations and windmills.
    Astronomy and Astrophysics 12/2012; 549(A11):1-16. · 4.48 Impact Factor
  • pasp. 10/2012; 124:1135-1136.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [Abridged] Sub-mm observations of the William Herschel Deep Field using LABOCA revealed possible counterparts for 2 X-ray absorbed QSOs. The aim here is to exploit EVLA imaging at 8.4 GHz to establish the QSOs as radio/sub-mm sources. The challenge in reducing the EVLA data was the presence of a strong 4C source in the field. A new calibration algorithm was applied to the data to subtract it. The resulting thermal noise limited radio map covers the 16'x16' Extended WHDF. It contains 41 sources above a 4-sigma limit, 17 of which have primary beam corrected flux. The radio observations show that the absorbed AGN with LABOCA detections are coincident with radio sources, confirming the tendency for X-ray absorbed AGN to be sub-mm bright. These sources show strong ultraviolet excess (UVX) suggesting the nuclear sightline is gas- but not dust-absorbed. Of the 3 remaining LABOCA sources within the ~5' half-power beam width, 1 is identified with a faint nuclear X-ray/radio source in a nearby galaxy, 1 with a faint radio source and 1 is unidentified in any other band. More generally, differential radio source counts are in good agreement with previous observations, showing at S<50 micro-Jy a significant excess over a pure AGN model. In the full area, of 10 sources fainter than this limit, 6 have optical counterparts of which 3 are UVX (i.e. likely QSOs) including the 2 absorbed quasar LABOCA sources. The other faint radio counterparts are not UVX but are only slightly less blue and likely to be star-forming/merging galaxies, predominantly at lower luminosities and redshifts. The 4 faint, optically unidentified radio sources may be either dust obscured QSOs or galaxies. These high-z obscured AGN and lower-z star-forming populations are thus the main candidates to explain the observed excess in faint source counts and hence the excess radio background found previously by the ARCADE2 experiment.
    Monthly Notices of the Royal Astronomical Society 09/2012; 428(2). · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we describe the first data release of the the Visible and Infrared Survey Telescope for Astronomy (VISTA) Deep Extragalactic Observations (VIDEO) survey. VIDEO is a ~12degree^2 survey in the near-infrared Z,Y,J,H and K_s bands, specifically designed to enable the evolution of galaxies and large structures to be traced as a function of both epoch and environment from the present day out to z=4, and active galactic nuclei (AGN) and the most massive galaxies up to and into the epoch of reionization. With its depth and area, VIDEO will be able to fully explore the period in the Universe where AGN and starburst activity were at their peak and the first galaxy clusters were beginning to virialize. VIDEO therefore offers a unique data set with which to investigate the interplay between AGN, starbursts and environment, and the role of feedback at a time when it was potentially most crucial. We provide data over the VIDEO-XMM3 tile, which also covers the Canada-France-Hawaii-Telescope Legacy Survey Deep-1 field (CFHTLS-D1). The released VIDEO data reach a 5-sigma AB-magnitude depth of Z=25.7, Y=24.5, J=24.4, H=24.1 and K_s=23.8 in 2 arcsec diameter apertures (the full depth of Y=24.6 will be reached within the full integration time in future releases). The data are compared to previous surveys over this field and we find good astrometric agreement with the Two-Micron All Sky Survey, and source counts in agreement with the recently released UltraVISTA survey data. The addition of the VIDEO data to the CFHTLS-D1 optical data increases the accuracy of photometric redshifts and significantly reduces the fraction of catastrophic outliers over the redshift range 0<z<1 from 5.8 to 3.1 per cent in the absence of an i-band luminosity prior. (Truncated Abstract)
    Monthly Notices of the Royal Astronomical Society 06/2012; · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the Spitzer Extragalactic Representative Volume Survey (SERVS), an 18 square degrees medium-deep survey at 3.6 and 4.5 microns with the post-cryogenic Spitzer Space Telescope to ~2 microJy (AB=23.1) depth of five highly observed astronomical fields (ELAIS-N1, ELAIS-S1, Lockman Hole, Chandra Deep Field South and XMM-LSS). SERVS is designed to enable the study of galaxy evolution as a function of environment from z~5 to the present day, and is the first extragalactic survey both large enough and deep enough to put rare objects such as luminous quasars and galaxy clusters at z>1 into their cosmological context. SERVS is designed to overlap with several key surveys at optical, near- through far-infrared, submillimeter and radio wavelengths to provide an unprecedented view of the formation and evolution of massive galaxies. In this paper, we discuss the SERVS survey design, the data processing flow from image reduction and mosaicing to catalogs, as well as coverage of ancillary data from other surveys in the SERVS fields. We also highlight a variety of early science results from the survey.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present new detections of the CO(5-4), CO(7-6), [CI](1-0) and [CI](2-1) molecular and atomic line transitions towards the unlensed, obscured quasar AMS12 (z=2.7672), observed with the IRAM PdBI. This is the first unlensed, high redshift source to have both [CI] transitions detected. Continuum measurements between 70 $\mu$m and 3 mm are used to constrain the FIR SED, and we find a best fit FIR luminosity of log[Lfir/Lsol] = 13.5+/-0.1, dust temperature T_d = 88+/-8 K and emissivity index {\beta} = 0.6+/-0.1. The highly-excited molecular gas probed by CO(3-2), (5-4) and (7-6), is modelled with large velocity gradient (LVG) models. The gas kinetic temperature T_g, density n(H2), and the characteristic size r0, are determined using the dust temperature from the FIR SED as a prior for the gas temperature. The best fitting parameters are T_g = 90+/-8 K, n(H2) = 10^(3.9+/-0.1) cm^(-3) and r0 = 0.8+/-0.04 kpc. The ratio of the [CI] lines gives a [CI] excitation temperature of 43+/-10 K, indicating the [CI] and the high-excitation CO are not in thermal equilibrium. The [CI] excitation temperature is below that of T_d and T_g of the high-excitation CO, perhaps because [CI] lies at a larger radius where there may also be a large reservoir of CO at a cooler temperature, perhaps detectable through the CO(1-0). Using the [CI](1-0) line we can estimate the strength of the CO(1-0) line and hence the gas mass. This suggests that a significant fraction (~30%) of the molecular gas is missed from the high-excitation line analysis. The Eddington limited black hole mass is found from the bolometric luminosity to be Mbh >~ 1.5x10^9 Msol. Along with the stellar mass of 3x10^11 Msol, these give a black hole - bulge mass ratio of Mbh/Mbulge >~ 0.005. This is in agreement with studies on the evolution of the Mbh/Mbulge relationship at high redshifts, which find a departure from the local value ~0.002.
    Monthly Notices of the Royal Astronomical Society 04/2012; 423(3). · 5.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of a search for galaxy clusters in the Subaru-XMM Deep Field (SXDF). We reach a depth for a total cluster flux in the 0.5-2keV band of 2x10-15erg/cm2/s over one of the widest XMM-Newton contiguous raster surveys, covering an area of 1.3deg2. Cluster candidates are identified through a wavelet detection of extended X-ray emission. The red-sequence technique allows us to identify 57 cluster candidates. We report on the progress with the cluster spectroscopic follow-up and derive their properties based on the X-ray luminosity and cluster scaling relations. (3 data files).
    VizieR Online Data Catalog. 02/2012;
  • Source
    Alejo Martinez-Sansigre, Steve Rawlings
    [Show abstract] [Hide abstract]
    ABSTRACT: Under the assumption that jets in active galactic nuclei are powered by accretion and the spin of the central supermassive black hole, we are able to reproduce the radio luminosity functions of high- and low-excitation galaxies. High-excitation galaxies are explained as high-accretion rate but very low spin objects, while low-excitation galaxies have low accretion rates and bimodal spin distributions, with approximately half of the population having maximal spins. At higher redshifts (z~1), the prevalence of high accretion rate objects means the typical spin was lower, while in the present day Universe is dominated by low accretion rate objects, with bimodal spin distributions.
    American Journal of Science. 01/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present spectroscopic and eleven-band photometric redshifts for galaxies in the 100-uJy Subaru/XMM-Newton Deep Field radio source sample. We find good agreement between our redshift distribution and that predicted by the SKA Simulated Skies project. We find no correlation between K-band magnitude and radio flux, but show that sources with 1.4-GHz flux densities below ~1mJy are fainter in the near-infrared than brighter radio sources at the same redshift, and we discuss the implications of this result for spectroscopically-incomplete samples where the K-z relation has been used to estimate redshifts. We use the infrared--radio correlation to separate our sample into radio-loud and radio-quiet objects and show that only radio-loud hosts have spectral energy distributions consistent with predominantly old stellar populations, although the fraction of objects displaying such properties is a decreasing function of radio luminosity. We calculate the 1.4-GHz radio luminosity function (RLF) in redshift bins to z=4 and find that the space density of radio sources increases with lookback time to z~2, with a more rapid increase for more powerful sources. We demonstrate that radio-loud and radio-quiet sources of the same radio luminosity evolve very differently. Radio-quiet sources display strong evolution to z~2 while radio-loud AGNs below the break in the radio luminosity function evolve more modestly and show hints of a decline in their space density at z>1, with this decline occurring later for lower-luminosity objects. If the radio luminosities of these sources are a function of their black hole spins then slowly-rotating black holes must have a plentiful fuel supply for longer, perhaps because they have yet to encounter the major merger that will spin them up and use the remaining gas in a major burst of star formation.
    Monthly Notices of the Royal Astronomical Society 01/2012; 421(4). · 5.23 Impact Factor

Publication Stats

6k Citations
1,140.42 Total Impact Points


  • 1997–2012
    • University of Oxford
      • Department of Physics
      Oxford, England, United Kingdom
    • The University of Manchester
      Manchester, England, United Kingdom
  • 2007
    • Max Planck Institute for Astronomy
      Heidelburg, Baden-Württemberg, Germany
  • 2006
    • Durham University
      • Department of Physics
      Durham, ENG, United Kingdom
  • 1996–2006
    • Liverpool John Moores University
      • Astrophysics Research Institute
      Liverpool, ENG, United Kingdom
    • Cardiff University
      • School of Physics and Astronomy
      Cardiff, Wales, United Kingdom
  • 2005
    • National Research Council Canada
      Ottawa, Ontario, Canada
  • 2003
    • University of Texas at Austin
      • Department of Astronomy
      Austin, Texas, United States
  • 1993
    • University of Toronto
      • Department of Astronomy and Astrophysics
      Toronto, Ontario, Canada
  • 1991
    • National Radio Astronomy Observatory
      Charlottesville, Virginia, United States
  • 1990
    • Space Telescope Science Institute
      Baltimore, Maryland, United States
  • 1989
    • University of Cambridge
      Cambridge, England, United Kingdom