Sang-Won Lee

Korea University, Sŏul, Seoul, South Korea

Are you Sang-Won Lee?

Claim your profile

Publications (2)9.64 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Escherichia coli RNase E contains a site that selectively binds to RNAs containing 5'-monophosphate termini, increasing the efficiency of endonucleolytic cleavage of these RNAs. Random mutagenesis of N-Rne, the N-terminal catalytic region of RNase E, identified a hyperactive variant that remains preferentially responsive to phosphorylation at 5' termini. Biochemical analyses showed that the mutation (Q36R), which replaces glutamine with arginine at a position distant from the catalytic site, increases formation of stable RNA-protein complexes without detectably affecting the enzyme's secondary or tertiary structure. Studies of cleavage of fluorogenic substrate and EMSA experiments indicated that the Q36R mutation increases catalytic activity and RNA binding. However, UV crosslinking and mass spectrometry studies suggested that the mutant enzyme lacks an RNA binding site present in its wild-type counterpart: two substrate-bound tryptic peptides, (65) HGFLPLK (71)--which includes amino acids previously implicated in substrate binding and catalysis--and (24) LYDLDIESPGHEQK (37)--which includes the Q36 locus-were identified in wild-type enzyme complexes. Only the shorter peptide was observed for complexes containing Q36R. Our results identify a novel RNase E locus that disparately affects the number of substrate binding sites and catalytic activity of the enzyme. We propose a model that may account for these surprising effects.
    RNA biology 11/2011; 8(6):1022-34. DOI:10.4161/rna.8.6.18063 · 4.97 Impact Factor
  • Su-Jin Kim · Byong Chul Yoo · Chang-Sub Uhm · Sang-Won Lee ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein arginine methylation is a major posttranslational modification that regulates various cellular functions, such as RNA processing and DNA repair. A recent report showed the involvement of protein arginine methyltransferase (PRMT) 4 in chromatin remodeling and gene expression during muscle differentiation in C2C12 cells. Because the fusion of myoblasts is a unique phenomenon observed in skeletal muscle differentiation, the present study focused on the expression and activities of PRMTs during myoblast fusion in primary rat skeletal muscle. N(G), N(G)-asymmetric dimethylarginines (aDMA) and N(G), N'(G)-symmetric dimethylarginines (sDMA) were both found consistently throughout myoblast fusion. However, PRMT1 exhibited the highest activity during myoblast fusion and maintained the elevated activity thereafter, whereas PRMT5 reached its highest activity only after myoblast fusion. To identify the proteins modified by such PRMTs, we conducted 2-dimensional electrophoresis (2-DE) of total proteins before and after myoblast fusion, and protein spots on the 2-DE gel immunoreactive for aDMA and sDMA were identified by mass spectrometric analysis. Among the proteins identified, lamin C2 was in particular observed to be dimethylated. Arginine methylation of lamin may therefore be important for muscle development and maintenance.
    Biochimica et Biophysica Acta 02/2011; 1814(2):308-17. DOI:10.1016/j.bbapap.2010.11.006 · 4.66 Impact Factor