Rong Chen

Howard Hughes Medical Institute, Maryland, United States

Are you Rong Chen?

Claim your profile

Publications (2)28.46 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem cell differentiation is accompanied by a gradual cellular morphogenesis and transcriptional changes. Identification of morphological regulators that control cell behavior during differentiation could shed light on how cell morphogenesis is coupled to transcriptional changes during development. By analyzing cellular behavior during differentiation of mouse embryonic stem cells (ESCs), we uncover a role of Borg5 (binder of Rho guanosine 5'-triphosphatase 5) in regulating trophectoderm (TE) cell morphogenesis. We report that differentiation of ESCs toward TE is accompanied by enhanced actin protrusion and cell motility that require upregulation of Borg5. Borg5 interacts with both Cdc42 and atypical protein kinase C (aPKC) and functions downstream of Cdc42 to enhance TE cell motility. Borg5 is required for the sorting of differentiating TE to the outside of ESCs in vitro. In developing embryos, Borg5 protein localizes to cell-cell contacts and the cytoplasm after compaction. It exhibits higher levels of expression in outer cells than in inner cells in morula and blastocysts. Reduction of Borg5 disrupts aPKC localization and inhibits blastocyst formation. Since Cdx2 and Borg5 facilitate each other's expression as ESCs differentiate toward TE, we propose that cell morphogenesis is coupled with transcriptional changes to regulate TE differentiation. Our studies also demonstrate the utility of ESCs in identifying morphological regulators important for development.
    Stem Cells 06/2010; 28(6):1030-8. · 7.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The small guanosine triphosphatase Ran loaded with GTP (RanGTP) can stimulate assembly of the type V intermediate filament protein lamin B into a membranous lamin B spindle matrix, which is required for proper microtubule organization during spindle assembly. Microtubules in turn enhance assembly of the matrix. Here we report that the isolated matrix contains known spindle assembly factors such as dynein and Nudel. Using spindle assembly assays in Xenopus egg extracts, we show that Nudel regulates microtubule organization during spindle assembly independently of its function at kinetochores. Importantly, Nudel interacts directly with lamin B to facilitate the accumulation and assembly of lamin-B-containing matrix on microtubules in a dynein-dependent manner. Perturbing either Nudel or dynein inhibited the assembly of lamin B matrix. However, depleting lamin B still allowed the formation of matrices containing dynein and Nudel. Therefore, dynein and Nudel regulate assembly of the lamin B matrix. Interestingly, we found that whereas depleting lamin B resulted in disorganized spindle and spindle poles, disrupting the function of Nudel or dynein caused a complete lack of spindle pole focusing. We suggest that Nudel regulates microtubule organization in part by facilitating assembly of the lamin B spindle matrix in a dynein-dependent manner.
    Nature Cell Biology 03/2009; 11(3):247-56. · 20.76 Impact Factor