Sabine André

Technische Universität München, München, Bavaria, Germany

Are you Sabine André?

Claim your profile

Publications (315)1112.4 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cycloadduct 1 is a conformationally constrained mimetic of the tumor-associated Tn antigen. It maintains the 4C1 conformation and the α-O-glycosidic linkage of the natural epitopes. Due to its tricyclic structure, the anomeric linkage is constrained and its conformation “frozen”. Using saturation transfer difference NMR spectroscopy experiments, epitope mapping for binding by three lectins [i.e., from Erythrina cristagalli (ECL), human macrophages (MGL), and from Helix pomatia (HPA)] was carried out. Striking differences in the epitope viewed from the ligand's perspective were revealed by this comparison. Evidently, the structural change around the C-2 position has a major impact, if the contact pattern to the ligand is not mostly restricted to galacto configuration with the axial hydroxyl group at C-4, in combination with C-3/C-6. These measurements thus provide insights into actual contacts, which help predict applicability as an inhibitor for distinct lectins, and as an elicitor of specific antibodies.
    European Journal of Organic Chemistry 09/2015; DOI:10.1002/ejoc.201500874 · 3.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A library of eight amphiphilic Janus glycodendrimers (Janus-GDs) presenting D-lactose (Lac) and a combination of Lac with up to eight methoxytriethoxy (3EO) units in a sequence-defined arrangement was synthesized via an iterative modular methodology. The length of the linker between Lac and the hydrophobic part of the Janus-GDs was also varied. Self-assembly by injection from THF solution into phosphate-buffered saline (PBS) led to unilamellar, monodisperse glycodendrimersomes (GDSs) with dimensions predicted by Janus-GD concentration. These GDSs provided a toolbox to measure bioactivity profiles in agglutination assays with sugar binding proteins (lectins). Three naturally occurring forms of the human adhesion/growth-regulatory lectin galectin-8 (Gal-8S and Gal-8L), which differ by the length of linker connecting their two active domains, and a single-amino acid mutant (F19Y) were used as probes to study activity and sensor capacity. Unpredictably, the sequence of Lac on the Janus-GDs was demonstrated to determine bioactivity with the highest level revealed for a Janus-GD with six 3EO groups and one Lac. A further increase in Lac density was invariably accompanied by a substantial decrease in agglutination, whereas a decrease in Lac density resulted in similar or lower bioactivity and sensor capacity. Both changes in topology of Lac presentation of the GDSs and seemingly subtle alterations in protein structure resulted in different levels of bioactivity, demonstrating the presence of regulation on both GDS surface and lectin. These results illustrate the applicability of Janus-GDs to dissect structure-activity relationships between programmable cell surface models and human lectins in a highly sensitive and physiologically relevant manner.
    Journal of the American Chemical Society 09/2015; DOI:10.1021/jacs.5b08844 · 12.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Estrogen deprivation is considered responsible for many age-related processes, including poor wound healing. Guided by previous observations that estradiol accelerates re‑epithelialization through estrogen receptor (ER)‑β, in the present study, we examined whether selective ER agonists [4,4',4''-(4-propyl [1H] pyrazole-1,3,5-triyl)‑trisphenol (PPT), ER‑α agonist; 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), ER‑β agonist] affect the expression of basic proliferation and differentiation markers (Ki‑67, keratin‑10, ‑14 and ‑19, galectin‑1 and Sox‑2) of keratinocytes using HaCaT cells. In parallel, ovariectomized rats were treated daily with an ER modulator, and wound tissue was removed 21 days after wounding and routinely processed for basic histological analysis. Our results revealed that the HaCaT keratinocytes expressed both ER‑α and ‑β, and thus are well-suited for studying the effects of ER agonists on epidermal regeneration. The activation of ER‑α produced a protein expression pattern similar to that observed in the control culture, with a moderate expression of Ki‑67 being observed. However, the activation of ER‑β led to an increase in cell proliferation and keratin‑19 expression, as well as a decrease in galectin‑1 expression. Fittingly, in rat wounds treated with the ER‑β agonist (DPN), epidermal regeneration was accelerated. In the present study, we provide information on the mechanisms through which estrogens affect the expression patterns of selected markers, thus modulating keratinocyte proliferation and differentiation; in addition, we demonstrate that the pharmacological activation of ER-α and -β has a direct impact on wound healing.
    International Journal of Molecular Medicine 09/2015; DOI:10.3892/ijmm.2015.2351 · 2.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To assess the impact of Acanthamoeba keratitis (AK) and amniotic membrane transplantation (AMT) in corneal explants on presence of two multifunctional endogenous lectins, i.e. galectins-1 and -7. Ten corneal explants from AK patients (five with previous AMT and five controls without this treatment) and seven specimens of disease-free control cornea were processed by indirect fluorescent immunohistochemistry. Immunostaining for both galectins was obtained in the epithelium, stroma and the endothelial layer of all controls, with the strongest positivity in the epithelium. Significantly decreased intensity for galectin-1 was recorded in the epithelium of corneal explants from patients with AK and AMT. The signal for galectin-7 was significantly decreased in the epithelium of AK patients and normalized after AMT. AMT has a marked impact on presence of the two galectins in opposite directions, encouraging complete profiling for this family of endogenous effectors.
    Current eye research 09/2015; DOI:10.3109/02713683.2015.1061022 · 1.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Divergence from an ancestral gene leads to a family of homologous proteins. Whether they are physiologically distinct, similar or even redundant is an open question in each case. De fining profiles of tissue localization is a step toward giving diversity a functional meaning. Due to the significance of endogenous sugar receptors (lectins) as effectors for a wide range of cellular activities we have focused on galectins. The comparatively low level of network complexity constituted by only five canonical proteins, makes chicken galectins (CGs) an attractive choice to perform comprehensive analysis, here studied on bone/cartilage as organ system. Galectin expression was monitored by Western blotting and immunohistochemistry using non-cross-reactive antibodies. Overall, three galectins (CG-1B, CG-3, CG-8) were pre sent with individual expression patterns, one was found exclusively in the mesenchyme (CG-1A), the fifth (CG-2) not being detectable. The documented extents of separation are a sign for functional divergence; in cases with overlapping stainings, as for example in the osteopro genitor layer or periosteum, cooperation may also be possible. Recombinant production ena bled the introduction of the endogenous lectins as tools for binding-site localization. Their testing revealed developmental regulation and cell-type-specific staining. Of relevance for research on mammalian galectins, this study illustrates that certain cell types can express more than one galectin, letting functional interrelationships appear likely. Thus, complete network analysis irrespective of its degree of complexity is mandatory. This article is protected by copyright. All rights reserved. © 2015 Wiley Periodicals, Inc.
    The Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology 09/2015; DOI:10.1002/ar.23265 · 1.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The physiological significance arising from translating information stored in glycans into cellular effects explains the interest in structurally defining lectin-carbohydrate recognition. The relatively small set of adhesion/growth-regulatory galectins in chicken makes this system attractive to study the origins of specificity and divergence. Cell binding by using glycosylation mutants reveals binding of the N-terminal domain of chicken galectin-8 (CG-8N) to α-2,3-sialylated and galactose-terminated glycan chains. Cocrystals with lactose and its 3'-sialylated derivative disclose Arg58 as a key contact for the carboxylic acid and differences in loop lengths to the three homodimeric chicken galectins. Monitoring hydrogen-deuterium exchange by mass spectrometry revealed an effective reduction of deuteration after ligand binding within the contact area. In addition, evidence for changes in solvent accessibility of amide protons beyond this site was obtained. Their detection, which highlights the sensor capacity of this technique, encourages systematic studies on galectins and beyond. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Chemistry - A European Journal 08/2015; 21(39). DOI:10.1002/chem.201501961 · 5.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A shift to short-chain glycans is an observed change in mucin-type O-glycosylation in pre- and malignant epithelia. Given the evidence that human galectin-3 can interact with mucins and also weakly with free tumor-associated Thomsen-Friedenreich (TF) tumor-associated antigen (CD176), the study of its interaction with MUC1 (glyco)peptides is of biomedical relevance. Glycosylated MUC1 fragments that carry the TF antigen attached either through Thr or Ser side chains were synthesized using standard Fmoc-based automated solid-phase peptide chemistry. The dissociation constants (Kd) for interaction of galectin-3 and the glycosylated MUC1 fragments measured by ITC decreased up to 10 times in comparison to the free TF disaccharide. No binding was observed for the non-glycosylated control version of the MUC1 peptide. The most notable feature of the binding of MUC1-glycopeptides to galectin-3 was a shift from a favorable enthalpy to an entropy-driven binding process. The comparatively diminished enthalpy contribution to the free energy (ΔG) was compensated by a considerable gain in the entropic term. (1)H-(15)N HSQC NMR data reveal contact at the canonical site mainly by the glycan moiety of MUC1 glycopeptide. Ligand-dependent differences in binding affinities were also confirmed by a novel assay for screening of low-affinity glycan-lectin interactions based on AlphaScreen technology. Another key finding is that the glycosylated MUC1 peptides exhibited activity in a concentration-dependent manner in cell-based assays revealing selectivity among human galectins. Thus, the presentation of this tumor-associated carbohydrate ligand by the natural peptide scaffold enhances its affinity, highlighting the significance of model studies of human lectins with synthetic glycopeptides.
    Biochemistry 07/2015; 54(29). DOI:10.1021/acs.biochem.5b00555 · 3.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lectins translate information encoded in glycan chains of cellular glycoconjugates into bioeffects. The topological presentation of contact sites for cognate sugar binding is a crucial factor toward this end. To dissect the significance of such phylogenetically conserved properties, the design and engineering of non-natural variants are attractive approaches. Here, a homodimeric human lectin, i.e. adhesion/growth-regulatory galectin-1, is converted into a tandem-repeat display by introducing the 33-amino-acid linker of another family member (i.e. galectin-8). The yield of variant was reduced by about a third. This protein had ∼10-fold higher activity in hemagglutination. Nearly complete sequence determination by mass-spectrometric in-source decay and fingerprinting excluded the presence of any modifications. When 1H-15N heteronuclear single-quantum coherence data on the 15N-labeled variant and wild-type protein were compared, changes in chemical shifts, signal intensities and resonance multiplicities revealed reduction of stability of interfacial contacts between the lectin domains and an increase in inter-domain flexibility. When both binding sites in the variant were loaded with ligand, association of the two carbohydrate recognition domains was enhanced, corroborated by gel filtration. Dynamic changes in the spatial presentation of the two lectin domains in the context of a tandem-repeat display can alter counterreceptor targeting relative to the fixed positions found in the proto-type galectin homodimer.
    Protein Engineering Design and Selection 07/2015; 28(7). DOI:10.1093/protein/gzv014 · 2.54 Impact Factor
  • Sabine André · Birgit Classen · Hans-Joachim Gabius
    [Show abstract] [Hide abstract]
    ABSTRACT: The increasing evidence for the physiological significance of glycan-protein (lectin) interactions prompts considerations for respective bioactivity of plant polysaccharides. Arabinogalactan from larch, a polysaccharide with a β1,3-linked galactose core and branches at the 6'-hydroxyl, was thus tested, together with two processed forms treated either with oxalic or trifluoroacetic acid. Hydrolysis by acid reduced the arabinose contents without backbone degradation. The three preparations were tested as an inhibitor of lectin binding in solid-phase and cell-based assays, using the toxin from Viscum album and a panel of seven human lectins (six galectins and a C-type lectin). Increasing potency correlating with the molecular contents of galactose was seen for the plant toxin. In general, relatively weak or no inhibitory capacity was detected for the three preparations, when binding of the human galectins and avian orthologues used as controls was measured. Acid-treated polysaccharides also weakly interfered with binding of the galactose-specific C-type lectin of human macrophages. Larch arabinogalactan, tested as a model, will thus most likely not impair (ga)lectin functionality physiologically. Georg Thieme Verlag KG Stuttgart · New York.
    Planta Medica 06/2015; 81(12-13). DOI:10.1055/s-0035-1546113 · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Surface-presented glycans (complex carbohydrates) are docking sites for adhesion/growth-regulatory galectins within cell-cell/matrix interactions. Alteration of the linker length in human galectin-8 and single-site mutation (F19Y) are used herein to illustrate the potential of glycodendrimersomes with programmable glycan displays as a model system to reveal the functional impact of natural sequence variations in trans recognition. Extension of the linker length slightly reduces lectin capacity as agglutinin and slows down aggregate formation at low ligand surface density. The mutant protein is considerably less active as agglutinin and less sensitive to low-level ligand presentation. The present results suggest that mimicking glycan complexity and microdomain occurrence on the glycodendrimersome surface can provide key insights into mechanisms to accomplish natural selectivity and specificity of lectins in structural and topological terms.
    Proceedings of the National Academy of Sciences 05/2015; 112(18):5585-5590. DOI:10.1073/pnas.1506220112 · 9.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The profile of cell surface molecules, the biochemical platform for cellular communication, can be likened to a molecular fingerprint. Historically, raising monoclonal antibodies by immunization with cells has been instrumental in obtaining tools suited for phenotyping and functional analysis. Initially for leukocyte antigens, the resulting cluster of differentiation (CD) nomenclature has become a popular system for classification. Glycans presented on proteins or lipids and receptors for carbohydrate structures (lectins) are part of the CD list. Our review presents biochemical and biomedical highlights of the respective CD entries. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Trends in Biochemical Sciences 05/2015; 40(7). DOI:10.1016/j.tibs.2015.03.013 · 11.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Emerging insights into the functional spectrum of tissue lectins leads to identification of new targets for the custom-made design of potent inhibitors, providing a challenge for synthetic chemistry. The affinity and selectivity of a carbohydrate ligand for a lectin may immensely be increased by a number of approaches, which includes varying geometrical or topological features. This perspective leads to the design and synthesis of glycoclusters and their testing using assays of physiological relevance. Herein, hydroquinone, resorcinol, benzene-1,3,5-triol and tetra(4-hydroxyphenyl)ethene have been employed as scaffolds and propargyl derivatives obtained. The triazole-containing linker to the alpha/beta-O/S-glycosides of GlcNAc/GalNAc presented on these scaffolds was generated by copper-catalysed azide-alkyne cycloaddition. This strategy was used to give a panel of nine glycoclusters with bi-, tri- and tetravalency. Maintained activity for lectin binding after conjugation was ascertained for both sugars in solid-phase assays with the plant agglutinins WGA (GlcNAc) and DBA (GalNAc). Absence of cross-reactivity excluded any carbohydrate-independent reactivity of the bivalent compounds, allowing to proceed to further testing with a biomedically relevant lectin specific for GalNAc. Macrophage galactose(-binding C)-type lectin, involved in immune defence by dendritic cells and in virus uptake, was produced as soluble protein without/with its alpha-helical coiled-coil stalk region. Binding to ligands presented on a matrix and on cell surfaces was highly susceptible to presence of the tetravalent inhibitor derived from the tetraphenylethene-containing scaffold, and presentation of GalNAc in an alpha-thioglycosidic linkage proved favorable. Cross-reactivity of this glycocluster to human galectins-3 and -4, which interact with Tn-antigen-presenting mucins, was rather small. Evidently, the valency and spatial display of alpha-GalNAc residues is a key factor to design potent and selective inhibitors for this lectin.
    Organic & Biomolecular Chemistry 02/2015; 13(14). DOI:10.1039/C5OB00048C · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A major aspect of carbohydrate-dependent galectin functionality is their cross-linking capacity. Using a cell surface as biorelevant platform for galectin binding and a panel of 40 glycans as sensor part of a fluorescent polyacrylamide neoglycopolymer for profiling galectin reactivity, properties of related proteins can be comparatively analyzed. The group of the chicken galectins (CGs) is an especially suited system toward this end due to its relatively small size, compared to mammalian galectins. The experiments reveal particularly strong reactivity toward N-acetyllactosamine repeats for all tested CGs and shared reactivity of CG-1A and CG-2 to histo-blood group ABH determinants. In cross-species comparison, CG-1B's properties closely resembled those of human galectin-1, as was the case for the galectin-2 (but not galectin-3) orthologue pair. Although binding-site architectures are rather similar, reactivity patterns can well differ. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:
    Glycobiology 02/2015; 25(7). DOI:10.1093/glycob/cwv012 · 3.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glycodendrimersomes with programmable surface display of glycan, together with artificially engineered galectins, were used to understand the physiological significance of human lectins with homodimeric and tandem-repeat-type displays. The mode of topological surface presentation and the density of glycan affected vesicle aggregation mediated by multivalent carbohydrate-protein interactions. The cross-linking capacity of homodimeric lectins was enhanced by covalent connection of the two carbohydrate-binding sites. These findings highlight the value of glycodendrimersomes as versatile cell membrane mimetics, and assays provide diagnostic tools for protein functionality. This work also provides guidelines for the design of cell separators, bioactive matrices, bioeffectors, and other biomedical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Angewandte Chemie International Edition in English 02/2015; 127(13). DOI:10.1002/anie.201410882 · 13.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The view on the significance of the presence of glycans in glycoconjugates is undergoing a paradigmatic change. Initially mostly considered to be rather inert and passive, the concept of the sugar code identifies glycans as highly versatile platform to store information. Their chemical properties endow carbohydrates to form oligomers with unsurpassed structural variability. Owing to their capacity to engage in hydrogen (and coordination) bonding and C-H/π-interactions these "code words" can be "read" (in Latin, legere) by specific receptors. A distinct class of carbohydrate-binding proteins are the lectins. More than a dozen protein folds have developed carbohydrate-binding capacity in vertebrates. Taking galectins as an example, distinct expression patterns are traced. The availability of labeled endogenous lectins facilitates monitoring of tissue reactivity, extending the scope of lectin histochemistry beyond that which traditionally involved plant lectins. Presentation of glycan and its cognate lectin can be orchestrated, making a glycan-based effector pathway in growth control of tumor and activated T cells possible. In order to unravel the structural basis of lectin specificity for particular glycoconjugates mimetics of branched glycans and programmable models of cell surfaces are being developed by strategic combination of lectin research with synthetic and supramolecular chemistry.
    Molecules 02/2015; 20(2):1788-1823. DOI:10.3390/molecules20021788 · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acta Crystallographica Section F: Structural Biology Communications is a rapid all-electronic journal, which provides a home for short communications on the crystalliza-tion and structure of biological macromolecules. Structures determined through structural genomics initiatives or from iterative studies such as those used in the pharmaceutical industry are particularly welcomed. Articles are available online when ready, making publication as fast as possible, and include unlimited free colour illustrations, movies and other enhancements. The editorial process is completely electronic with respect to deposition, submission, refereeing and publication.
    Acta Crystallographica 02/2015; 71(Pt 2):184-188. DOI:10.1107/S2053230X15000023
  • [Show abstract] [Hide abstract]
    ABSTRACT: The emerging significance of lectins for pathophysiological processes provides incentive for the design of potent inhibitors. To this end, systematic assessment of contributions to affinity and selectivity by distinct types of synthetic tailoring of glycosides is a salient step, here taken for the aglyconic modifications of two disaccharide core structures. Firstly we report the synthesis of seven N-linked-lactosides and of eight O-linked N-acetyllactosamines, each substituted with a 1,2,3-triazole unit, prepared by copper-catalyzed azide–alkyne cycloaddition (CuAAC). The totally regioselective β-D-(14) galactosylation of a 6-O-TBDPSi-protected N-acetylglucosamine acceptor provided efficient access to the N-acetyllactosamine precursor. The resulting compounds were then systematically tested for lectin reactivity in two binding assays of increasing biorelevance (inhibition of lectin binding to a surface-presented glycoprotein and to cell surfaces). As well as a plant toxin, we also screened the relative inhibitory potential with adhesion/growth-regulatory galectins (total of eight proteins). This type of modification yielded up to 2.5-fold enhancement for prototype proteins, with further increases for galectins-3 and -4. Moreover, the availability of 15N-labeled proteins and full assignments enabled 1H,15N HSQC-based measurements for hu- man galectins-1, -3, and -7 against p-nitrophenyl lactopyranoside, a frequently tested standard inhibitor containing an aromatic aglycone. The measurements confirmed the highest affinity against galectin-3 and detected chemical shift differences in its hydrophobic core upon ligand binding, besides common alterations around the canonical contact site for the lactoside residue. What can be accomplished in terms of affinity/selectivity by this type of core extension having been determined, the applied combined strategy should be instrumental for proceeding with defining structure–activity correlations at other bioinspired sites in glycans and beyond the tested lectin types.
    ChemBioChem 01/2015; 16(1). DOI:10.1002/cbic.201402474 · 3.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Substitution of the oxygen atom in the glycosidic linkage by a disulfide bond or by selenium makes the resulting glycoside resistant to hydrolysis. To clarify the consequences for affinity to lectins we prepared benzene-based mono- to trivalent dithiogalactosides. Inhibitory capacity increased with valency for a plant toxin, the synthetic compounds potently blocking its binding to a lactose-presenting matrix and to cells. Human galectins were much less sensitive to the disulfides than the toxin. This differential response constitutes a beneficial effect to avoid cross-reactivity in vivo. Symmetrical selenodigalactoside and diselenodigalactoside were prepared and similarly tested. Both compounds proved rather equally bioactive for the toxin, graded activity was measured for human galectins. This result directs attention to further studies to relate Se-dependent alterations in bond angle and length as well as van der Waals radius to binding properties of selenoglycosides to biomedically relevant lectins.
    Bioorganic & Medicinal Chemistry Letters 12/2014; 25(4). DOI:10.1016/j.bmcl.2014.12.049 · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human macrophage galactose-type lectin (MGL) is a key physiological receptor for the carcinoma-associated Tn antigen (GalNAc-α-1-O-Ser/Thr) in mucins. NMR and modeling-based data on the molecular recognition features of synthetic Tn-bearing glycopeptides by MGL are presented. Cognate epitopes on the sugar and matching key amino acids involved in the interaction were identified by saturation transfer difference (STD) NMR spectroscopy. Only the amino acids close to the glycosylation site in the peptides are involved in lectin contact. Moreover, control experiments with non-glycosylated MUC1 peptides unequivocally showed that the sugar residue is essential for MGL binding, as is Ca2+. NMR data were complemented with molecular dynamics simulations and Corcema-ST to establish a 3D view on the molecular recognition process between Gal, GalNAc, and the Tn-presenting glycopeptides and MGL. Gal and GalNAc have a dual binding mode with opposite trend of the main interaction pattern and the differences in affinity can be explained by additional hydrogen bonds and CH–π contacts involving exclusively the NHAc moiety.
    Chemistry - A European Journal 12/2014; 20(49). DOI:10.1002/chem.201404566 · 5.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Detailed comparative analysis of at first sight not related process cascades is a means toward this aim: to trace common effector mechanisms and hereby eventually inspire innovative routes for therapeutic management. Following this concept, promotion of tumor progression by stroma, especially cancer-associated fibroblasts and smooth muscle actin-positive myofibroblasts, and beneficial activity of respective cells in wound healing have helped to delineate the involvement of endogenous lectins of the family of galectins has been delineated. In addition to initiating conversion of fibroblasts to myofibroblasts, galectin-1 instructs the cells to produce a structurally complex extracellular matrix. This bioscaffold is useful for keratinocyte culture, also apparently operative in ameliorating wound healing. These functional aspects encourage to study in detail how lectin-(glycan) counterreceptor display is orchestrated. Such insights are assumed to have potential to contribute to rationally manipulate stem/precursor cells as resource in regenerative medicine.
    Histology and histopathology 10/2014; 30(3). DOI:10.14670/HH-30.293 · 2.10 Impact Factor

Publication Stats

9k Citations
1,112.40 Total Impact Points


  • 2008–2015
    • Technische Universität München
      München, Bavaria, Germany
  • 1994–2015
    • Ludwig-Maximilians-University of Munich
      • • Faculty of Veterinary Medicine
      • • Chair of Physiological Chemistry
      München, Bavaria, Germany
  • 2011
    • Federal University of Minas Gerais
      Cidade de Minas, Minas Gerais, Brazil
  • 2010
    • Utrecht University
      Utrecht, Utrecht, Netherlands
  • 2009
    • Complutense University of Madrid
      • Departamento de Química Orgánica y Farmacéutica
      Madrid, Madrid, Spain
  • 2005
    • University Hospital Brussels
      • Department of Neurosurgery
      Bruxelles, Brussels Capital Region, Belgium
  • 2004
    • Academy of Sciences of the Czech Republic
      • Institute of Macromolecular Chemistry
      Praha, Praha, Czech Republic
    • Institut Jules Bordet
      Bruxelles, Brussels Capital Region, Belgium
  • 2001
    • National Academy of Sciences of Belarus
      • Institute of Physiology
      Myenyesk, Minsk, Belarus