R Virmani

CVPath Institute, Maryland, United States

Are you R Virmani?

Claim your profile

Publications (6)6.92 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Biomechanical models are used extensively to study risk factors, such as peak stresses, for vulnerable atherosclerotic plaque rupture. Typically, 3D patient-specific arterial models are reconstructed by interpolating between cross sectional contour data which have a certain axial sampling, or image, resolution. The influence of the axial sampling resolution on computed stresses, as well as the comparison of 3D with 2D simulations, is quantified in this study. A set of histological data of four atherosclerotic human coronary arteries was used which were reconstructed in 3D with a high sampling (HS) and low sampling (LS) axial resolution, and 4 slices were treated separately for 2D simulations. Stresses were calculated using finite element analysis (FEA). High stresses were found in thin cap regions and regions of thin vessel walls, low stresses were found inside the necrotic cores and media and adventitia layers. Axial sampling resolution was found to have a minor effect on general stress distributions, peak plaque/cap stress locations and the relationship between peak cap stress and minimum cap thickness. Axial sampling resolution did have a profound influence on the error in computed magnitude of peak plaque/cap stresses (±15.5% for HS vs. LS geometries and ±24.0% for HS vs. 2D geometries for cap stresses). The findings of this study show that axial under sampling does not influence the qualitative stress distribution significantly but that high axially sampled 3D models are needed when accurate computation of peak stress magnitudes is required.
    Journal of biomechanics 12/2012; · 2.66 Impact Factor
  • ASME 2012 Summer Bioengineering Conference; 06/2012
  • ASME 2012 Summer Bioengineering Conference; 06/2012
  • Artery Research 12/2011; 5(4):159.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rupture of atherosclerotic plaques is the underlying cause for the majority of acute strokes and myocardial infarctions. Rupture of the plaque occurs when the stress in the plaque exceeds the strength of the material locally. Biomechanical stress analyses are commonly based on pressurized geometries, in most cases measured by in-vivo MRI. The geometry is therefore not stress-free. The aim of this study is to identify the effect of neglecting the initial stress state on the plaque stress distribution. Fifty 2D histological sections (7 patients, 9 diseased coronary artery segments), perfusion fixed at 100 mmHg, were segmented and finite element models were created. The Backward Incremental method was applied to determine the initial stress state and the zero-pressure state. Peak plaque and cap stresses were compared with and without initial stress. The effect of initial stress on the peak stress was related to the minimum cap thickness, maximum necrotic core thickness, and necrotic core angle. When accounting for initial stress, the general relations between geometrical features and peak cap stress remain intact. However, on a patient-specific basis, accounting for initial stress has a different effect on the absolute cap stress for each plaque. Incorporating initial stress may therefore improve the accuracy of future stress based rupture risk analyses for atherosclerotic plaques.
    Journal of biomechanics 09/2011; 44(13):2376-82. · 2.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rupture of the cap of a vulnerable plaque present in a coronary vessel may cause myocardial infarction and death. Cap rupture occurs when the peak cap stress exceeds the cap strength. The mechanical stress within a cap depends on the plaque morphology and the material characteristics of the plaque components. A parametric study was conducted to assess the effect of intima stiffness and plaque morphology on peak cap stress. Models with idealized geometries based on histology images of human coronary arteries were generated by varying geometric plaque features. The constructed multi-layer models contained adventitia, media, intima, and necrotic core sections. For adventitia and media layers, anisotropic hyperelastic material models were used. For necrotic core and intima sections, isotropic hyperelastic material models were employed. Three different intima stiffness values were used to cover the wide range reported in literature. According to the intima stiffness, the models were classified as stiff, intermediate and soft intima models. Finite element method was used to compute peak cap stress. The intima stiffness was an essential determinant of cap stresses. The computed peak cap stresses for the soft intima models were much lower than for stiff and intermediate intima models. Intima stiffness also affected the influence of morphological parameters on cap stresses. For the stiff and intermediate intima models, the cap thickness and necrotic core thickness were the most important determinants of cap stresses. The peak cap stress increased three-fold when the cap thickness was reduced from 0.25 mm to 0.05 mm for both stiff and intermediate intima models. Doubling the thickness of the necrotic core elevated the peak cap stress by 60% for the stiff intima models and by 90% for the intermediate intima models. Two-fold increase in the intima thickness behind the necrotic core reduced the peak cap stress by approximately 25% for both intima models. For the soft intima models, cap thickness was less critical and changed the peak cap stress by 55%. However, the necrotic core thickness was more influential and changed the peak cap stress by 100%. The necrotic core angle emerged as a critical determinant of cap stresses where a larger angle lowered the cap stresses. Contrary to the stiff and intermediate intima models, a thicker intima behind the necrotic core increased the peak cap stress by approximately 25% for the soft intima models. Adventitia thickness and local media regression had limited effects for all three intima models. For the stiff and intermediate intima models, the cap thickness was the most important morphological risk factor. However for soft intima models, the necrotic core thickness and necrotic core angle had a bigger impact on the peak cap stress. We therefore need to enhance our knowledge of intima material properties if we want to derive critical morphological plaque features for risk evaluation.
    BioMedical Engineering OnLine 01/2011; 10:25. · 1.61 Impact Factor