R Padmanabhan

Georgetown University, Washington, Washington, D.C., United States

Are you R Padmanabhan?

Claim your profile

Publications (89)333.66 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Flavivirus NS3 and NS5 are required in viral replication and 5'-capping. NS3 has an NS2B-dependent protease, RNA helicase and 5'-RNA triphosphatase activities. NS5 has 5'-RNA methyltransferase (MT)/guanylyltransferase (GT) activities within the N-terminal 270 amino acids (aa) and the RNA-dependent RNA polymerase (POL) activity within 271-900aa. A chimeric NS5 containing the D4 MT/GT and the D2POL domains in the context of wild-type (WT) D2 RNA was constructed. RNAs synthesized in vitro were transfected into Baby Hamster Kidney cells. The viral replication was analyzed by indirect immunofluorescence assay (IFA) to monitor NS1 expression and by qPCR. WT D2 RNA-transfected cells were NS1-positive by day 5, whereas the chimeric RNA-transfected cells became NS1-positive ~30 days post-transfection in three independent experiments. Sequence analysis covering the entire genome revealed the appearance of a single, K74I mutation within the D4MT domain ~16 days post-transfection in two experiments. In the third, D290N mutation in the conserved NS3 Walker B motif appeared ≥ 16-day post-transfection. A time course study of serial passages revealed that the 30-day supernatant had gradually evolved to gain replication fitness. Trans-complementation by co-expression of WT D2 NS5 accelerated viral replication of chimeric RNA without changing the K74I mutation. However, the MT and POL activities of NS5 WT D2 and the chimeric NS5 proteins with or without the K74I mutation are similar. Taken together, our results suggest that evolution of the functional interactions involving the chimeric NS5 protein encoded by the viral genome species is essential for gain of viral replication fitness.
    The Journal of biological chemistry. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue virus serotypes 1-4 (DENV1-4) are transmitted by mosquitoes which cause most frequent arboviral infections in the world resulting in ∼390 million cases with ∼25,000 deaths annually. There is no vaccine or antiviral drug currently available for human use. Compounds containing quinoline scaffold were shown to inhibit flavivirus NS2B-NS3 protease (NS2B-NS3pro) with good potencies. In this study, we screened quinoline derivatives, which are known antimalarial drugs for inhibition of DENV2 and West Nile virus (WNV) replication using the corresponding replicon expressing cell-based assays. Amodiaquine (AQ), one of the 4-aminoquinoline drugs, inhibited DENV2 infectivity measured by plaque assays, with EC50 and EC90 values of 1.08 ± 0.09 μM and 2.69 ± 0.47 μMrespectively, and DENV2 RNA replication measured by Renilla luciferase reporter assay, with EC50 value of 7.41 ± 1.09 μM in the replicon expressing cells. Cytotoxic concentration (CC50) in BHK-21 cells was 52.09 ± 4.25 μM. The replication inhibition was confirmed by plaque assay of the extracellular virions as well as by qRT-PCR of the intracellular and extracellular viral RNA levels. AQ was stable for at least 96 h and had minor inhibitory effect on entry, translation, and post-replication stages in the viral life cycle. DENV protease, 5'-methyltransferase, and RNA-dependent RNA polymerase do not seem to be targets of AQ. Both p-hydroxyanilino and diethylaminomethyl moieties are important for AQ to inhibit DENV2 replication and infectivity. Our results support AQ as a promising candidate for anti-flaviviral therapy.
    Antiviral research 03/2014; · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue virus serotypes 1-4 (DENV1-4) are transmitted by mosquitoes which cause most frequent arboviral infections in the world resulting in ∼390 million cases with ∼25,000 deaths annually. There is no vaccine or antiviral drug currently available for human use. Compounds containing quinoline scaffold were shown to inhibit flavivirus NS2B-NS3 protease (NS2B-NS3pro) with good potencies. In this study, we screened quinoline derivatives, which are known antimalarial drugs for inhibition of DENV2 and West Nile virus (WNV) replication using the corresponding replicon expressing cell-based assays. Amodiaquine (AQ), one of the 4-aminoquinoline drugs, inhibited DENV2 infectivity measured by plaque assays, with EC50 and EC90 values of 1.08 ± 0.09 μM and 2.69 ± 0.47 μMrespectively, and DENV2 RNA replication measured by Renilla luciferase reporter assay, with EC50 value of 7.41 ± 1.09 μM in the replicon expressing cells. Cytotoxic concentration (CC50) in BHK-21 cells was 52.09 ± 4.25 μM. The replication inhibition was confirmed by plaque assay of the extracellular virions as well as by qRT-PCR of the intracellular and extracellular viral RNA levels. AQ was stable for at least 96 h and had minor inhibitory effect on entry, translation, and post-replication stages in the viral life cycle. DENV protease, 5’-methyltransferase, and RNA-dependent RNA polymerase do not seem to be targets of AQ. Both p-hydroxyanilino and diethylaminomethyl moieties are important for AQ to inhibit DENV2 replication and infectivity. Our results support AQ as a promising candidate for anti-flaviviral therapy.
    Antiviral Research. 01/2014;
  • Mark Manzano, Janak Padia, Radhakrishnan Padmanabhan
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue virus (DENV), a member of mosquito-borne flavivirus genus in the Flaviviridae family, is an important human pathogen of global significance. DENV infections are the most common arbovirus infections in the world, causing more than ~300 million cases annually. Although majority of infections result in simple self-limiting disease known as dengue fever which resolve in 7-10 days, ~500,000 cases lead to more severe complications known as dengue hemorrhagic fever/dengue shock syndrome, more frequently observed in secondary infections due to an antibody-dependent enhancement mechanism, resulting in ~25,000 deaths. Currently, there are no vaccines or antiviral drug available for the treatment of DENV infections. Several viral and host proteins have been identified as potential targets for drug development. Some of the viral targets have enzyme activities that play essential roles in viral RNA replication for which in vitro high-throughput screening (HTS) assays have been developed. In this chapter, we describe an in vitro assay for the viral serine protease that has been successfully adapted to HTS format and has been used to screen several thousand compounds to identify inhibitors of the viral protease.
    Methods in molecular biology (Clifton, N.J.) 01/2014; 1138:331-44. · 1.29 Impact Factor
  • Mark Manzano, Radhakrishnan Padmanabhan
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of cDNA infectious clones or subgenomic replicons is indispensable in studying flavivirus biology. Mutating nucleotides or amino acid residues gives important clues to their function in the viral life cycle. However, a major challenge to the establishment of a reverse genetics system for flaviviruses is the instability of their nucleotide sequences in Escherichia coli. Thus, direct cloning using conventional restriction enzyme-based procedures usually leads to unwanted rearrangements of the construct. In this chapter, we discuss a cloning strategy that bypasses traditional cloning procedures. We take advantage of the observations from previous studies that (1) unstable sequences in bacteria can be cloned in eukaryotic systems and (2) Saccharomyces cerevisiae has a well-studied genetics system to introduce sequences using homologous recombination. We describe a protocol to perform targeted mutagenesis in a subgenomic dengue virus 2 replicon. Our method makes use of homologous recombination in yeast using a linearized replicon and a PCR product containing the desired mutation. Constructs derived from this method can be propagated in E. coli with improved stability. Thus, yeast in vivo recombination provides an excellent strategy to genetically engineer flavivirus infectious clones or replicons because this system is compatible with inherently unstable sequences of flaviviruses and is not restricted by the limitations of traditional cloning procedures.
    Methods in molecular biology (Clifton, N.J.) 01/2014; 1138:151-60. · 1.29 Impact Factor
  • Siwaporn Boonyasuppayakorn, Radhakrishnan Padmanabhan
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue virus (DENV), a member of mosquito-borne flavivirus, causes self-limiting dengue fever as well as life-threatening dengue hemorrhagic fever and dengue shock syndrome. Its positive sense RNA genome has a cap at the 5'-end and no poly(A) tail at the 3'-end. The viral RNA encodes a single polyprotein, C-prM-E-NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5. The polyprotein is processed into 3 structural proteins (C, prM, and E) and 7 nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5). NS3 and NS5 are multifunctional enzymes performing various tasks in viral life cycle. The N-terminal domain of NS5 has distinct GTP and S-adenosylmethionine (SAM) binding sites. The role of GTP binding site is implicated in guanylyltransferase (GTase) activity of NS5. The SAM binding site is involved in both N-7 and 2'-O-methyltransferase (MTase) activities involved in formation of type I cap. The C-terminal domain of NS5 catalyzes RNA-dependent RNA polymerase (RdRp) activity involved in RNA synthesis. We describe the construction of the MTase domain of NS5 in an E. coli expression vector, purification of the enzyme, and conditions for enzymatic assays of N7- and 2'O-methyltransferase activities that yield the final type I 5'-capped RNA ((7Me)GpppA2'OMe-RNA).
    Methods in molecular biology (Clifton, N.J.) 01/2014; 1138:361-73. · 1.29 Impact Factor
  • Source
    Sofia L Alcaraz-Estrada, Rosa Del Angel, Radhakrishnan Padmanabhan
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue virus serotypes 1-4 are members of mosquito-borne flavivirus genus of Flaviviridae family that encode one long open reading frame (ORF) that is translated to a polyprotein. Both host and virally encoded proteases function in the processing of the polyprotein by co-translational and posttranslational mechanisms to yield 10 mature proteins prior to viral RNA replication. To study cis- and trans-acting factors involved in viral RNA replication, many groups [1-8] have constructed cDNAs encoding West Nile virus (WNV), DENV, or yellow fever virus reporter replicon RNAs. The replicon plasmids constructed in our laboratory for WNV [9] and the DENV4 replicon described here are arranged in the order of 5'-untranslated region (UTR), the N-terminal coding sequence of capsid (C), Renilla luciferase (Rluc) reporter gene with a translation termination codon, and an internal ribosome entry site (IRES) element from encephalomyocarditis virus (EMCV) for cap-independent translation of the downstream ORF that codes for a polyprotein precursor, CterE-NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5, followed by the 3'-UTR. In the second DENV4 replicon, the Rluc gene is fused sequentially downstream to the 20 amino acid (aa) FMDV 2A protease coding sequence, neomycin resistance gene (Neo(r)), a termination codon, and the EMCV leader followed by the same polyprotein coding sequence and 3'-UTR as in the first replicon. The first replicon is useful to study by transient transfection experiments the cis-acting elements and trans-acting factors involved in viral RNA replication. The second DENV4 replicon is used to establish a stable monkey kidney (Vero) cell line by transfection of replicon RNA and selection in the presence of the G418, an analog of neomycin. This replicon is useful for screening and identifying antiviral compounds that are potential inhibitors of viral replication.
    Methods in molecular biology (Clifton, N.J.) 01/2014; 1138:131-50. · 1.29 Impact Factor
  • Huiguo Lai, Tadahisa Teramoto, Radhakrishnan Padmanabhan
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue virus serotypes 1-4 (DENV1-4) are mosquito-borne human pathogens of global significance causing ~390 million cases annually worldwide. The virus infections cause in general a self-limiting disease, known as dengue fever, but occasionally also more severe forms, especially during secondary infections, dengue hemorrhagic fever and dengue shock syndrome causing ~25,000 deaths annually. The DENV genome contains a single-strand positive sense RNA, approximately 11 kb in length. The 5'-end has a type I cap structure. The 3'-end has no poly(A) tail. The viral RNA has a single long open reading frame that is translated by the host translational machinery to yield a polyprotein precursor. Processing of the polyprotein precursor occurs co-translationally by cellular proteases and posttranslationally by the viral serine protease in the endoplasmic reticulum (ER) to yield three structural proteins (capsid (C), precursor membrane (prM), and envelope (E) and seven nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The active viral protease consists of both NS2B, an integral membrane protein in the ER, and the N-terminal part of NS3 (180 amino acid residues) that contains the trypsin-like serine protease domain having a catalytic triad of H51, D75, and S135. The C-terminal part of NS3, ~170-618 amino acid residues, encodes an NTPase/RNA helicase and 5'-RNA triphosphatase activities; the latter enzyme is required for the first step in 5'-capping. The cleavage sites of the polyprotein by the viral protease consist of two basic amino acid residues such as KR, RR, or QR, followed by short chain amino acid residues, G, S, or T. Since the cleavage of the polyprotein by the viral protease is absolutely required for assembly of the viral replicase, blockage of NS2B/NS3pro activity provides an effective means for designing dengue virus (DENV) small-molecule therapeutics. Here we describe the screening of small-molecule inhibitors against DENV2 protease.
    Methods in molecular biology (Clifton, N.J.) 01/2014; 1138:345-60. · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue viruses (DENV), members of mosquito-borne Flaviviruses, are human pathogens of global significance. The virus enters the host cell through endocytosis and uncoating subsequent to a low pH-triggered conformational change of E protein in endosomes. The endosomes are active in antigen processing and the key enzyme involved is the gamma interferon-inducible lysosomal thiol reductase (GILT). Here, we sought to address the role of GILT in DENV2 entry using fibroblasts from wild type (WT) and GILT knockout (GILT(-/-)) mice (MFs) with defective antigen processing. Our results obtained using DENV2 infectious and Renilla luciferase reporter replicon RNAs show that WT MFs are relatively resistant and GILT(-/-) MFs are susceptible to DENV2 translation and replication. We show that DENV2 infection of WT MEFs induced autophagy based on an increased LC3-II/LC3-I ratio that is further enhanced in GILT(-/-) cells. The increased susceptibility of DENV2 infection in the GILT(-/-)MFs strongly correlates with increased autophagy.
    Virology 04/2013; · 3.35 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Dengue virus (DENV) genome contains multiple cis-acting elements required for translation and replication. Previous studies indicated that a 719-nt subgenomic minigenome (DENV-MINI) is an efficient template for translation and (−) strand RNA synthesis in vitro. We performed a detailed structural analysis of DENV-MINI RNA, combining chemical acylation techniques, Pb2+ ion-induced hydrolysis and site-directed mutagenesis. Our results highlight protein-independent 5′–3′ terminal interactions involving hybridization between recognized cis-acting motifs. Probing analyses identified tandem dumbbell structures (DBs) within the 3′ terminus spaced by single-stranded regions, internal loops and hairpins with embedded GNRA-like motifs. Analysis of conserved motifs and top loops (TLs) of these dumbbells, and their proposed interactions with downstream pseudoknot (PK) regions, predicted an H-type pseudoknot involving TL1 of the 5′ DB and the complementary region, PK2. As disrupting the TL1/PK2 interaction, via ‘flipping’ mutations of PK2, previously attenuated DENV replication, this pseudoknot may participate in regulation of RNA synthesis. Computer modeling implied that this motif might function as autonomous structural/regulatory element. In addition, our studies targeting elements of the 3′ DB and its complementary region PK1 indicated that communication between 5′–3′ terminal regions strongly depends on structure and sequence composition of the 5′ cyclization region.
    Nucleic Acids Research 03/2013; · 8.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Dengue virus (DENV) genome contains multiple cis-acting elements required for translation and replication. Previous studies indicated that a 719-nt subgenomic minigenome (DENV-MINI) is an efficient template for translation and (-) strand RNA synthesis in vitro. We performed a detailed structural analysis of DENV-MINI RNA, combining chemical acylation techniques, Pb(2+) ion-induced hydrolysis and site-directed mutagenesis. Our results highlight protein-independent 5'-3' terminal interactions involving hybridization between recognized cis-acting motifs. Probing analyses identified tandem dumbbell structures (DBs) within the 3' terminus spaced by single-stranded regions, internal loops and hairpins with embedded GNRA-like motifs. Analysis of conserved motifs and top loops (TLs) of these dumbbells, and their proposed interactions with downstream pseudoknot (PK) regions, predicted an H-type pseudoknot involving TL1 of the 5' DB and the complementary region, PK2. As disrupting the TL1/PK2 interaction, via 'flipping' mutations of PK2, previously attenuated DENV replication, this pseudoknot may participate in regulation of RNA synthesis. Computer modeling implied that this motif might function as autonomous structural/regulatory element. In addition, our studies targeting elements of the 3' DB and its complementary region PK1 indicated that communication between 5'-3' terminal regions strongly depends on structure and sequence composition of the 5' cyclization region.
    Nucleic Acids Research 03/2013; · 8.28 Impact Factor
  • Sofia L Alcaraz-Estrada, Erin Donohue Reichert, Radhakrishnan Padmanabhan
    [Show abstract] [Hide abstract]
    ABSTRACT: Mosquito-borne flavivirus RNA genomes encode one long open reading frame flanking 5'- and 3'-untranslated regions (5'- and 3'-UTRs) which contain cis-acting RNA elements playing important roles for viral RNA translation and replication. The viral RNA encodes a single polyprotein, which is processed into three structural proteins and seven nonstructural (NS) proteins. The regions coding for the seven NS proteins are sufficient for replication of the RNA. The sequences encoding the structural genes can be deleted except for two short regions. The first one encompasses 32 amino acid (aa) residues from the N-terminal coding sequence of capsid (C) and the second, 27 aa region from the C-terminus of envelope (E) protein. The deleted region can be substituted with a gene coding for a readily quantifiable reporter to give rise to a subgenomic reporter replicon. Replicons containing a variety of reporter genes and marker genes for construction of stable mammalian cell lines are valuable reagents for studying the effects of mutations in translation and/or replication in isolation from processes like the entry and assembly of the virus particles. Here we describe the construction of two West Nile virus (WNV) replicons by overlap extension PCR and standard recombinant DNA techniques. One has a Renilla luciferase (Rluc) reporter gene followed by an internal ribosome entry site (element) for cap-independent translation of the open reading frame encompassing the carboxy-terminal sequence of E to NS5. The second replicon has in tandem the Rluc gene, foot and mouth disease virus 2A, and neomycin phosphotransferase gene that allows establishment of a stable mammalian cell line expressing the Rluc reporter in the presence of the neomycin analog, G418. The stable replicon-expressing Vero cell line has been used for cell-based screening and determination of EC50 values for antiviral compounds that inhibited WNV replication.
    Methods in molecular biology (Clifton, N.J.) 01/2013; 1030:283-299. · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 1,2-Benzisothiazol-3(2H)-ones and 1,3,4-oxadiazoles individually have recently attracted considerable interest in drug discovery, including as antibacterial and antifungal agents. In this study, a series of functionalized 1,2-benzisothiazol-3(2H)-one-1,3,4-oxadiazole hybrid derivatives were synthesized and subsequently screened against Dengue and West Nile virus proteases. Ten out of twenty-four compounds showed greater than 50% inhibition against DENV2 and WNV proteases ([I]=10μM). The IC(50) values of compound 7n against DENV2 and WNV NS2B/NS3 were found to be 3.75±0.06 and 4.22±0.07μM, respectively. The kinetics data support a competitive mode of inhibition by compound 7n. Molecular modeling studies were performed to delineate the putative binding mode of this series of compounds. This study reveals that the hybrid series arising from the linking of the two scaffolds provides a suitable platform for conducting a hit-to-lead optimization campaign via iterative structure-activity relationship studies, in vitro screening and X-ray crystallography.
    Bioorganic & medicinal chemistry 11/2012; · 2.82 Impact Factor
  • Huiguo Lai, G Sridhar Prasad, Radhakrishnan Padmanabhan
    [Show abstract] [Hide abstract]
    ABSTRACT: Four serotypes of Dengue virus (DENV1-4), mosquito-borne members of Flaviviridae family cause frequent epidemics causing considerable morbidity and mortality in humans throughout tropical regions of the world. There is no vaccine or antiviral therapeutics available for human use. In a previous study, we reported that compounds containing the 8-hydroxyquinoline (8-HQ) scaffold as inhibitors of West Nile virus serine protease. In this study, we analyzed potencies of some compounds with (8-HQ)-aminobenzothiazole derivatives for inhibition of DENV2 protease in vitro. We identified analogs 1-4 with 2-aminothiazole or 2-aminobenzothiazole scaffold with sub-micromolar potencies (IC(50)) in the in vitro protease assays. The kinetic constant (K(i)) for the most potent 8-HQ-aminobenzothiazoleinhibitor (compound 1) with an IC(50) value of 0.91 ± 0.05 μM was determined to be 2.36 ± 0.13 μM. This compound inhibits the DENV2 NS2B/NS3pro by a competitive mode of inhibition.
    Antiviral research 11/2012; · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue and West Nile viruses (WNV) are mosquito-borne members of flaviviruses that cause significant morbidity and mortality. There is no approved vaccine or antiviral drugs for human use to date. In this study, a series of functionalized meta and para aminobenzamide derivatives were synthesized and subsequently screened in vitro against Dengue virus and West Nile virus proteases. Four active compounds were identified which showed comparable activity toward the two proteases and shared in common a meta or para(phenoxy)phenyl group. The inhibition constants (K(i)) for the most potent compound 7n against Dengue and West Nile virus proteases were 8.77 and 5.55 μM, respectively. The kinetics data support a competitive mode of inhibition of both proteases by compound 7n. This conclusion is further supported by molecular modeling. This study reveals a new chemical scaffold which is amenable to further optimization to yield potent inhibitors of the viral proteases via the combined utilization of iterative medicinal chemistry/structure-activity relationship studies and in vitro screening.
    Bioorganic & medicinal chemistry 05/2012; 20(13):4140-8. · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: West Nile virus (WNV) is a mosquito-borne member of flaviviruses that causes significant morbidity and mortality especially among children. There is currently no approved vaccine or antiviral therapeutic for human use. In a previous study, we described compounds containing the 8-hydroxyquinoline (8-HQ) scaffold as inhibitors of WNV serine protease (NS2B/NS3pro) in a high throughput screen (HTS) using the purified WNV NS2B/NS3pro as the target. In this study, we analyzed potencies of some commercially available as well as chemically synthesized derivatives of 8-HQ by biochemical assays. An insight into the contribution of various substitutions of 8-HQ moiety for inhibition of the protease activity was revealed. Most importantly, the substitution of the N1 of the 8-HQ ring by -CH- in compound 26 significantly reduced the inhibition of the viral protease by this naphthalen-1-ol derivative. The kinetic constant (K(i)) for the most potent 8-HQ inhibitor (compound 14) with an IC(50) value of 2.01 ± 0.08 μM using the tetra-peptide substrate was determined to be 5.8 μM. This compound inhibits the WNV NS2B/NS3pro by a competitive mode of inhibition which is supported by molecular modeling.
    Antiviral research 02/2012; 94(1):18-24. · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two click chemistry-derived focused libraries based on the benz[d]isothiazol-3(2H)-one scaffold were synthesized and screened against Dengue virus and West Nile virus NS2B-NS3 proteases. Several compounds (4l, 7j-n) displayed noteworthy inhibitory activity toward Dengue virus NS2B-NS3 protease in the absence and presence of added detergent. These compounds could potentially serve as a launching pad for a hit-to-lead optimization campaign.
    Bioorganic & medicinal chemistry 02/2012; 20(3):1213-21. · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using the massively parallel genetic algorithm for RNA folding, we show that the core region of the 3'-untranslated region of the dengue virus (DENV) RNA can form two dumbbell structures (5'- and 3'-DBs) of unequal frequencies of occurrence. These structures have the propensity to form two potential pseudoknots between identical five-nucleotide terminal loops 1 and 2 (TL1 and TL2) and their complementary pseudoknot motifs, PK2 and PK1. Mutagenesis using a DENV2 replicon RNA encoding the Renilla luciferase reporter indicated that all four motifs and the conserved sequence 2 (CS2) element within the 3'-DB are important for replication. However, for translation, mutation of TL1 alone does not have any effect; TL2 mutation has only a modest effect in translation, but translation is reduced by ∼60% in the TL1/TL2 double mutant, indicating that TL1 exhibits a cooperative synergy with TL2 in translation. Despite the variable contributions of individual TL and PK motifs in translation, WT levels are achieved when the complementarity between TL1/PK2 and TL2/PK1 is maintained even under conditions of inhibition of the translation initiation factor 4E function mediated by LY294002 via a noncanonical pathway. Taken together, our results indicate that the cis-acting RNA elements in the core region of DENV2 RNA that include two DB structures are required not only for RNA replication but also for optimal translation.
    Journal of Biological Chemistry 06/2011; 286(25):22521-34. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Replicon systems have been useful to study mechanisms of translation and replication of flavivirus RNAs. In this study, we constructed a dengue virus 4 replicon encoding a Renilla luciferase (R(luc)) reporter, and six single-residue substitution mutants were generated: L128F and S158P in the non-structural protein (NS) 3 protease domain gene, and N96I, N390A, K437R and M805I in the NS5 gene. The effects of these substitutions on viral RNA translation and/or replication were examined by measuring R(luc) activities in wild-type and mutant replicon RNA-transfected Vero cells incubated at 35, 37 and 39 °C. Our results show that none of the mutations affected translation of replicon RNAs; however, L128F and S158P of NS3 at 39°C, and N96I of NS5 at 37 and 39°C, presented temperature-sensitive (ts) phenotypes for replication. Furthermore, using in vitro methyltransferase assays, we identified that the N96I mutation in NS5 exhibited a ts phenotype for N7-methylation, but not for 2'-O-methylation.
    Journal of General Virology 11/2010; 91(Pt 11):2713-8. · 3.13 Impact Factor

Publication Stats

2k Citations
333.66 Total Impact Points

Institutions

  • 2003–2014
    • Georgetown University
      • Department of Microbiology and Immunology
      Washington, Washington, D.C., United States
  • 2010–2012
    • Wichita State University
      • Department of Chemistry
      Wichita, KS, United States
    • Kansas City University of Medicine and Biosciences
      Kansas City, Missouri, United States
  • 1999–2010
    • University of Alabama at Birmingham
      Birmingham, Alabama, United States
    • Temple University
      Philadelphia, Pennsylvania, United States
  • 2009
    • University of Mississippi
      • National Center for Natural Products Research
      Oxford, MS, United States
  • 2008
    • University of Washington Seattle
      • Department of Microbiology
      Seattle, WA, United States
  • 1987–2002
    • Kansas City VA Medical Center
      Kansas City, Missouri, United States
  • 1996
    • National Cancer Institute (USA)
      • Laboratory of Molecular Biology
      Maryland, United States