Peng-Yuan Yang

Fudan University, Shanghai, Shanghai Shi, China

Are you Peng-Yuan Yang?

Claim your profile

Publications (89)245.11 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The application of calibration transfer methods has been successful in combination with near-infrared spectroscopy or other tools for prediction of chemical composition. One of the developed methods that can provide accurate performances is the piecewise direct standardization (PDS) method, which in this paper is firstly applied to transfer from one day to another the second-order calibration model based on alternating trilinear decomposition (ATLD) method built for the interference-free resolution and determination of multi-analytes in complex systems by liquid chromatography-mass spectrometry (LC-MS) in full scan mode. This is an example of LC-MS analysis in which interferences have been found, making necessary the use of second-order calibration because of its capacity for modeling this phenomenon, which implies analytes of interest can be resolved and quantified even in the presence of overlapped peaks and unknown interferences. Once the second-order calibration model based on ATLD method was built, the calibration transfer was conducted to compensate for the signal instability of LC-MS instrument over time. This allows one to reduce the volume of the heavy works for complete recalibration which is necessary for later accurate determinations. The root-mean-square error of prediction (RMSEP) and average recovery were used to evaluate the performances of the proposed strategy. Results showed that the number of calibration samples used on the real LC-MS data was reduced by using the PDS method from 11 to 3 while producing comparable RMSEP values and recovery values that were statistically the same (F-test, 95% confidence level) to those obtained with 11 calibration samples. This methodology is in accordance with the highly recommended green analytical chemistry principles, since it can reduce the experimental efforts and cost with regard to the use of a new calibration model built in modified conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
    Journal of Chromatography A 06/2015; DOI:10.1016/j.chroma.2015.06.049 · 4.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Colorectal cancer (CRC) is the third and second most common cancer in males and females worldwide, respectively. Spondin-2 is a conserved secreted extracellular matrix protein and a candidate cancer biomarker. Here we found that Spondin-2 mRNA was upregulated in CRC tissues using quantitative RT-PCR and data-mining of public Oncomine microarray datasets. Spondin-2 protein was increased in CRC tissues, as revealed by immunohistochemistry analyses of two tissue microarrays containing 180 cases. Spondin-2 gene expression was significantly associated with CRC stage, T stage, M stage and Dukes stage, while its protein was associated with age and M stage. Kaplan-Meier analysis revealed that the upregulated Spondin-2 mRNA and protein predicted poor prognosis of CRC patients. Univariate and multivariate Cox regression analyses indicated that grade, recurrence, N stage and high Spondin-2 were independent predictors of overall survival of CRC patients. ELISA revealed that plasma Spondin-2 was upregulated in CRC and dropped after surgery. Receiver operating characteristic curve analysis demonstrated that plasma Spondin-2 has superior predictive performance for CRC with an area under the curve of 0.959 and the best sensitivity/specificity of 100%/90%. Furthermore, ectopic expression of Spondin-2 enhanced colon cancer cell proliferation. Spondin-2 could be an independent diagnostic and prognostic biomarker of colon cancer.
    Oncotarget 04/2015; · 6.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tumor cell proliferation, migration and invasion were influenced by the interaction between the cancer cells and their microenvironment. In current study, we established two pairs of the primary fibroblast cultures from colorectal adenocarcinoma tissues and the normal counterparts and identified 227 proteins in the colonic fibroblast secretomes; half of these proteins were novel. The mass spectrometry data and analyzed results presented here provide novel insights into the molecular characteristics and modulatory role of colon cancer associated fibroblasts. The data is related to “Identification of colonic fibroblast secretomes reveals secretory factors regulating colon cancer cell proliferation” by Chen et al. [1].
    12/2014; 1:19-24. DOI:10.1016/j.dib.2014.08.003
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gastric cancer (GC) is the fourth and fifth most common cancer in men and women, respectively. We identified 2,750 proteins at false discovery rates of 1.3% (protein) and 0.03% (spectrum) by comparing the proteomic profiles of three GC and a normal gastric cell lines. Nine proteins were significantly dysregulated in all three GC cell lines, including filamin C, a muscle-specific filamin and a large actin-cross-linking protein. Downregulation of filamin C in GC cell lines and tissues were verified using quantitative PCR and immunohistochemistry. Data-mining using public microarray datasets shown that filamin C was significantly reduced in many human primary and metastasis cancers. Transient expression or silencing of filamin C affected the proliferation and colony formation of cancer cells. Silencing of endogenous filamin C enhanced cancer cell migration and invasion, whereas ectopic expression of filamin C had opposing effects. Silencing of filamin C increased the expression of matrix metallopeptidase 2 and improved the metastasis of prostate cancer in a zebrafish model. High filamin C associated with better prognosis of prostate cancer, leukemia and breast cancer patients. These findings establish a functional role of filamin C in human cancers and these data will be valuable for further study of its mechanisms.
    Oncotarget 11/2014; · 6.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: β-blockers are the first-line therapeutic agents for treating cardiovascular diseases and also a class of prohibited substances in athletic competitions. In this work, a smart strategy that combines three-way liquid chromatography-mass spectrometry (LC-MS) data with second-order calibration method based on alternating trilinear decomposition (ATLD) algorithm was developed for simultaneous determination of ten β-blockers in human urine and plasma samples. This flexible strategy proved to be a useful tool to solve the problems of overlapped peaks and uncalibrated interferences encountered in quantitative LC-MS, and made the multi-targeted interference-free qualitative and quantitative analysis of β-blockers in complex matrices possible. The limits of detection were in the range of 2.0×10(-5)-6.2×10(-3)μgmL(-1), and the average recoveries were between 90 and 110% with standard deviations and average relative prediction errors less than 10%, indicating that the strategy could provide satisfactory prediction results for ten β-blockers in human urine and plasma samples only using liquid chromatography hyphenated single-quadrupole mass spectrometer in full scan mode. To further confirm the feasibility and reliability of the proposed method, the same batch samples were analyzed by multiple reaction monitoring (MRM) method. T-test demonstrated that there are no significant differences between the prediction results of the two methods. Considering the advantages of fast, low-cost, high sensitivity, and no need of complicated chromatographic and tandem mass spectrometric conditions optimization, the proposed strategy is expected to be extended as an attractive alternative method to quantify analyte(s) of interest in complex systems such as cells, biological fluids, food, environment, pharmaceuticals and other complex samples.
    Analytica Chimica Acta 10/2014; 848:10–24. DOI:10.1016/j.aca.2014.08.052 · 4.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stromal microenvironment influences tumor cell proliferation and migration. Fibroblasts represent the most abundant stromal constituents. Here, we established two pairs of normal fibroblast (NF) and cancer-associated fibroblast (CAF) cultures from colorectal adenocarcinoma tissues and the normal counterparts. The NFs and CAFs were stained positive for typical fibroblast markers and inhibited colon cancer (CC) cell proliferation in in vitro cocultures and in xenograft mouse models. The fibroblast conditioned media were analyzed using LC-MS and 227 proteins were identified at a false discovery rate of 1.3%, including 131 putative secretory and 20 plasma membrane proteins. These proteins were enriched for functional categories of extracellular matrix, adhesion, cell motion, inflammatory response, redox homeostasis and peptidase inhibitor. Secreted protein acidic and rich in cysteine, transgelin, follistatin-related protein 1 (FSTL1) and decorin were abundant in the fibroblast secretome as confirmed by Western blot. Silencing of FSTL1 and transgelin in colonic fibroblast cell line CCD-18Co induced an accelerated proliferation of CC cells in cocultures. Exogenous FSTL1 attenuates CC cell proliferation in a negative fashion. FSTL1 was upregulated in CC patient plasma and cancerous tissues but had no implication in prognosis. Our results provided novel insights into the molecular signatures and modulatory role of CC associated fibroblasts.
    Journal of Proteomics 08/2014; 110. DOI:10.1016/j.jprot.2014.07.031 · 3.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Taking advantage of reliable metabolic labeling and accurate isobaric MS2 quantification, we developed a global in vivo terminal amino acid labeling (G-IVTAL) strategy by combining metabolic labeling and isotopic dimethyl labeling for quantifying tryptic peptides. With G-IVTAL, the scale of qualitative and quantitative data can be increased twofold compared with in vivo termini amino acid labeling (IVTAL) in which Lys-N and Arg-C are used for digestion. As a result, up to 81.78% of the identified proteins have been confidently quantified in G-IVTAL-labeled HepG2 cells. Dialyzed serum has been used in most SILAC studies to ensure complete labeling. However, dialysis requires the removal of low molecular weight hormones, cytokines, and cellular growth factors, which are essential for the cell growth of certain cell lines. To address the influence of dialyzed serum in HepG2 growth, the G-IVTAL strategy was applied to quantify the expression differences between dialyzed serum- and normal serum-cultured HepG2 cells. Finally, we discovered 111 differentially expressed proteins, which could be used as references to improve the reliability of the SILAC quantification. Among these, by using western blotting, the differential expressions of MTDH, BCAP31, and GPC3 were confirmed as being influenced by dialyzed serum. The experimental results demonstrate that the G-IVTAL strategy is a powerful tool to achieve accurate and reliable protein quantification.
    The Analyst 07/2014; 139(18). DOI:10.1039/c4an00728j · 3.91 Impact Factor
  • Hong LIU, Jun YAO, Peng-Yuan YANG, Hui-Zhi FAN
    [Show abstract] [Hide abstract]
    ABSTRACT: Due to the complexity of the biological sample, it is important to develop an effective pre-separation method for the liquid chromatography-mass spectrometer (LC-MS) analysis of biological samples. In this experiment, enzymatic hydrolysate of rat liver protein was pre-separated by peptide immobilized pH gradient isoelectric focusing (IPG-IEF) method, and the pre-separated components were further separated by reversed physe liquid chromatography (RPLC) and then identified by LTQ-Orbitrap MS. A total of 2039 kinds of proteins were identified, including 18 kinds of acetylated proteins, 4 kinds of proteins which were never reported before. Next, bioinformatic analysis was carried out for these proteins. The results showed that peptide IPG-IEF coupled with LC-MS/MS is an effective technique for proteomics analysis and this method is suitable for large-scale protein identification.
    Chinese Journal of Analytical Chemistry 02/2014; 42(2):203–208. DOI:10.1016/S1872-2040(13)60710-0 · 0.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The chromatin remodeling gene AT-rich interactive domain-containing protein 1A (ARID1A) encodes the protein BAF250a, a subunit of human SWI/SNF-related complexes. Recent studies have identified ARID1A as a tumor suppressor. Here, we show that ARID1A expression is reduced in gastric cancer (GC) tissues, which are significantly associated with local lymph node metastasis, tumor infiltration and poor patient prognosis. ARID1A silencing enforces the migration and invasion of GC cells, whereas ectopic expression of ARID1A inhibits migration. The adhesive protein E-cadherin is remarkably downregulated in response to ARID1A silencing, but it is upregulated by ARID1A overexpression. E-cadherin overexpression significantly inhibits GC cell migration and invasion, while CDH1 (coded E-cadherin) silencing promotes migration. Restored expression of CDH1 in ARID1A-silenced cell lines restores the inhibition of cell migration. Luciferase reporter assays and chromatin immunoprecipitation indicate that the ARID1A-associated SWI/SNF complex binds to the CDH1 promoter and modulates CDH1 transcription. ARID1A knockdown induces evident morphological changes of GC cells with increased expression of mesenchymal markers, indicating an epithelial-mesenchymal transition. ARID1A silencing does not alter the level of β-catenin, but induces a subcellular redistribution of β-catenin from the plasma membrane to the cytoplasm and nucleus. Immunohistochemical studies demonstrate that reduced expression of E-cadherin is associated with local lymph node metastasis, tumor infiltration and poor clinical prognosis. ARID1A and E-cadherin expression show a strong correlation in 75.4% of the analyzed GC tissues. They are synergistically downregulated in 23.5% of analyzed GC tissues. In conclusion, ARID1A targets E-cadherin during the modulation of GC cell migration and invasion.
    Carcinogenesis 11/2013; DOI:10.1093/carcin/bgt398 · 5.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Histological differentiation is a major pathological parameter associated with poor prognosis in patients with pancreatic adenocarcinoma (PAC) and the molecular signature underlying PAC differentiation may involve key proteins potentially affecting the malignant characters of PAC. We aimed to identify the proteins which could be implicated in PAC prognosis. We used isobaric tags for relative and absolute quantitation (iTRAQ) coupled with two-dimensional liquid chromatography-tandem mass spectrometry to compare protein expression in PAC tissues with different degree of histological differentiation. A total of 1623 proteins were repeatedly identified by performing the iTRAQ-based experiments twice. Of these, 15 proteins were differentially expressed according to our defined criteria. Myoferlin(MYOF) was selected to validate the proteomic results by western blotting. Immunohistochemistry in a further 154 PAC cases revealed that myoferlin significantly correlated with the degree of histological differentiation (P=0.004), and univariate and multivariate analyses indicated that MYOF is an independent prognostic factor for survival (hazard ratio, 1.540; 95% confidence interval, 1.061-2.234; P=0.023) of patients with PAC after curative surgery. RNA interference-mediated knockdown of MYOF alleviated malignant phenotypes of both primary and metastatic PAC cell lines in vitro and in vivo. Thus, ITRAQ-based quantitative proteomics revealed the prognostic value of MYOF in PAC. our results provide the possibility of novel strategies for pancreatic adenocarcinoma management.
    Journal of proteomics 07/2013; 91. DOI:10.1016/j.jprot.2013.06.032 · 3.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A freezing technique protocol was proposed for coupling microchip electrophoresis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The microfluidic flow was frozen immediately after electrophoresis on microfluidic chip and the separated analyte molecules were kept in their zone pattern in the electrophoresis. Then, the frozen-chip was lyophilized and sent into TOF-MS instrument as a MALDI target, and the analyte molecules in the microfluidic channels were subjected to analysis by mass spectrometry. This approach could eliminate sample cross-contamination, providing a new interface for microchip electrophoresis and MALDI-MS.
    Chinese Chemical Letters 06/2013; 24(6):491–493. DOI:10.1016/j.cclet.2013.03.053 · 1.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A miniaturised reflectron time-of-flight mass spectrometer combined with an electron ionisation ion source has been developed for the analysis of gases. An entirely new helium ion removal pulsing technique in this mass spectrometer is used to achieve an improved performance for the first time. The helium carrier gas, which enters into the source along with the gaseous sample, is simultaneously ionised and then orthogonally introduced into the time-of-fight mass analyser. Once the relatively light helium ions in the ion packet become extremely close to the reflectron plate (B-plate for short in this article), a modulated pulse is instantaneously applied on the B-plate and a negative reflectron voltage is set to the B-plate and lasts for a very short period, during which all the helium ions are directly bumped into the B-plate and subsequently removed. The helium ion removal pulsing technique can efficiently avoid saturation of the micro-channel plate caused by too many helium ions. A compact and durable instrument is designed, which has a mass resolving resolution greater than 400 FWHM for online gas analysis. The technology may also be further developed to remove other ions for TOF mass spectrometry.
    The Analyst 05/2013; 138(12). DOI:10.1039/c3an00217a · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cystic hydatid disease is an important zoonosis caused by Echinococcus granulosus infection. The expression profiles of its parasitic life stages and host-Echinococcus interactions remain to be elucidated. Here, we identified 157 adult and 1588 protoscolex proteins (1610 in all), including 1290 novel identifications. Paramyosins and an antigen B (AgB) were the dominant adult proteins. Dog proteins (30) identified in adults indicated diminished local inflammation caused by adult infection. The protoscolex expresses proteins that have been reported to be antigens in other parasites, such as 6-phosphofructokinase and calcineurin B. Pathway analyses suggested that E. granulosus uses both aerobic and anaerobic carbohydrate metabolisms to generate ATP. E. granulosus expresses proteins involved in synthesis and metabolism of lipids or steroids. At least 339 of 390 sheep proteins identified in protoscolex were novel identifications not seen in previous analyses. IgGs and lambda light chains were the most abundant antibody species. Sheep proteins were enriched for detoxification pathways, implying that host detoxification effects play a central role during host-parasite interactions. Our study provides valuable data on E. granulosus expression characteristics, allowing novel insights into the molecular mechanisms involved in host-parasite interactions.
    Journal of proteomics 04/2013; 84. DOI:10.1016/j.jprot.2013.04.013 · 3.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies have revealed that pancreatic cancer (PC) may lead to diabetes mellitus (DM). We aimed to identify the proteins implicated in the development of PC-associated DM in PC tissues with DM.We used isobaric tags for relative and absolute quantitation (iTRAQ) coupled with two-dimensional liquid chromatography-tandem mass spectrometry to compare protein expression in PC tissues with DM with that in PC tissues without DM and in adjacent nontumor tissues with or without DM. A total of 80 surgically resected fresh tissues from 40 PC patients were included to identify differential protein expression. Western blotting and immunohistochemistry were then applied to evaluate the differential expression of selected proteins.A total of 1611 proteins were repeatedly identified and quantified by performing the iTRAQ-based experiments twice. Of these, 23 proteins were differentially expressed according to our defined criteria (12 upregulated and 11 downregulated). The S100 calcium binding protein A9 and aldehyde dehydrogenase 2 family were selected to validate the proteomic results by western blotting and immunohistochemistry.The identification of key proteins implicated in the development of PC-associated DM could serve as a foundation to better understand and further explore the etiology and pathogenesis of PC-associated DM. BIOLOGICAL SIGNIFICANCE: The identification of key proteins implicated in the development of PC-associated DM could serve as a foundation to better understand and further explore the etiology and pathogenesis of PC-associated DM.
    Journal of proteomics 04/2013; 84. DOI:10.1016/j.jprot.2013.03.031 · 3.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human hepatoma 3B cell line was chosen as an experimental model for in vitro test of drug screening. The drugs included chlorophyllin and its derivatives such as fluo-chlorophyllin, sodium copper chlorophyllin, and sodium iron chlorophyllin. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) method was used in this study to obtain the primary screening results. The results showed that sodium iron chlorophyllin had the best LC(50) value. Proteomic analysis was then performed for further investigation of the effect of sodium iron chlorophyllin addition to the Hep 3B cell line. The proteins identified from a total protein extract of Hep 3B before and after the drug addition were compared by two-dimensional-gel-electrophoresis. Then 32 three-fold differentially expressed proteins were successfully identified by MALDI-TOF-TOF-MS. There are 29 unique proteins among those identified proteins. These proteins include proliferating cell nuclear antigen (PCNA), T-complex protein, heterogeneous nuclear protein, nucleophosmin, heat shock protein A5 (HspA5) and peroxiredoxin. HspA5 is one of the proteins which are involved in protecting cancer cells against stress-induced apoptosis in cultured cells, protecting them against apoptosis through various mechanisms. Peroxiredoxin has anti-oxidant function and is related to cell proliferation, and signal transduction. It can protect the oxidation of other proteins. Peroxiredoxin has a close relationship with cancer and can eventually become a disease biomarker. This might help to develop a novel treatment method for carcinoma cancer.
    The Analyst 08/2012; 137(18):4287-94. DOI:10.1039/c2an35436e · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Electron transfer dissociation (ETD) is a useful and complementary activation method for peptide fragmentation in mass spectrometry. However, ETD spectra typically receive a relatively low score in the identifications of 2+ ions. To overcome this challenge, we, for the first time, systematically interrogated the benefits of combining ion charge enhancing methods (dimethylation, guanidination, m-nitrobenzyl alcohol (m-NBA) or Lys-C digestion) and differential search algorithms (Mascot, Sequest, OMSSA, pFind and X!Tandem). A simple sample (BSA) and a complex sample (AMJ2 cell lysate) were selected in benchmark tests. Clearly distinct outcomes were observed through different experimental protocol. In the analysis of AMJ2 cell lines, X!Tandem and pFind revealed 92.65% of identified spectra; m-NBA adduction led to a 5-10% increase in average charge state and the most significant increase in the number of successful identifications, and Lys-C treatment generated peptides carrying mostly triple charges. Based on the complementary identification results, we suggest that a combination of m-NBA and Lys-C strategies accompanied by X!Tandem and pFind can greatly improve ETD identification.
    Molecular BioSystems 07/2012; 8(10):2692-8. DOI:10.1039/c2mb25106j · 3.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Quantification by series of b, y fragment ion pairs generated from isobaric-labeled peptides in MS2 spectra has recently been considered an accurate strategy in quantitative proteomics. Here we developed a novel MS2 quantification approach named quantitation by isobaric terminal labeling (QITL) by coupling (18)O labeling with dimethylation. Trypsin-digested peptides were labeled with two (16)O or (18)O atoms at their C-termini in H(2)(16)O or H(2)(18)O. After blocking all ε-amino groups of lysines through guanidination, the N-termini of the peptides were accordingly labeled with formaldehyde-d(2) or formaldehyde. These indistinguishable, isobaric-labeled peptides in MS1 spectra produce b, y fragment ion pairs in the whole mass range of MS2 spectra that can be used for quantification. In this study, the feasibility of QITL was first demonstrated using standard proteins. An accurate and reproducible quantification over a wide dynamic range was achieved. Then, complex rat liver samples were used to verify the applicability of QITL for large-scale quantitative analysis. Finally, QITL was applied to profile the quantitative proteome of hepatocellular carcinoma (HCC) and adjacent non-tumor liver tissues. Given its simplicity, low-cost, and accuracy, QITL can be widely applied in biological samples (cell lines, tissues, and body fluids, etc.) for quantitative proteomic research.
    Journal of proteomics 07/2012; 75(18):5797-806. DOI:10.1016/j.jprot.2012.07.011 · 3.93 Impact Factor
  • Hui Wang, Guo-Xin Wang, Yu-Yu Xu, Lu Yu, Peng-Yuan Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: The high-chromium cast iron sample was microwave-assisted digested with aqueous regia in a closed vessel. Series standards were prepared with matching Fe matrix and adding Y as internal standard. Line intensities of the prepared standards and the digested sample solutions were determined by inductively coupled plasma atomic emission spectrometry. Accuracy of the proposed method was verified by the analysis of three national standard Materials GSBH 41018, GBW 01120 and GBW 01121, and the results were well agreed with the certification data.
    Guang pu xue yu guang pu fen xi = Guang pu 09/2011; 31(9):2558-60. DOI:10.3964/j.issn.1000-0593(2011)09-2558-03 · 0.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Quantitative proteomics is one of the research hotspots in the proteomics field and presently maturing rapidly into an important branch. The two most typical quantitative methods, stable isotope labeling with amino acids in cell culture (SILAC) and isobaric tags for relative and absolute quantification (iTRAQ), have been widely and effectively applied in solving various biological and medical problems. Here, we describe a novel quantitative strategy, termed "IVTAL", for in vivo termini amino acid labeling, which combines some advantages of the two methods above. The core of this strategy is a set of heavy amino acid (13)C(6)-arginine and (13)C(6)-lysine and specific endoproteinase Lys-N and Arg-C that yield some labeled isobaric peptides by cell culture and enzymatic digestion, which are indistinguishable in the MS scan but exhibit multiple MS/MS reporter b, y ion pairs in a full mass range that support quantitation. Relative quantification of cell states can be achieved by calculating the intensity ratio of the corresponding reporter b, y ions in the MS/MS scan. The experimental analysis for various proportions of mixed HeLa cell samples indicated that the novel strategy showed an abundance of reliable quantitative information, a high sensitivity, and a good dynamic range of nearly 2 orders of magnitude. IVTAL, as a highly accurate and reliable quantitative proteomic approach, is expected to be compatible with any cell culture system and to be especially effective for the analysis of multiple post-translational modificational sites in one peptide.
    Analytical Chemistry 06/2011; 83(15):6026-33. DOI:10.1021/ac201035f · 5.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study aims to develop novel clinical immunohistochemical biomarkers for distinguishing small hepatocellular carcinoma (sHCC) from dysplastic nodules (DN). iTRAQ-2DLC-ESI-MS/MS technique was used to screen immunohistochemical biomarkers between precancerous lesions (liver cirrhosis and DN) and sHCC. A total of 1951 proteins were quantified, including 52 proteins upregulated in sHCC and 95 proteins downregulated in sHCC by at least 1.25- or 0.8-fold at p < 0.05. The selected biomarker candidates were further verified using Western blotting and immunohistochemistry. Furthermore, receiver operation characteristics (ROC) curves and logistic regression model were carried out to evaluate the diagnostic values of the biomarkers. Finally, aminoacylase-1 (ACY1) and sequestosome-1 (SQSTM1) were chosen as novel candidate biomarkers for distinction of sHCC from DN. A constructed logistic regression model included ACY1, SQSTM1, and CD34. The sensitivity and specificity of this model for distinguishing sHCC from DN was 96.1% and 96.7%. In conclusion, ACY1 and SQSTM1 were identified as novel immunohistochemical biomarkers distinguishing sHCC from DN. In conclusion, expression levels of CD34, ACY1, and SQSTM1 can be used to establish an accurate diagnostic model for distinction of sHCC from DN.
    Journal of Proteome Research 06/2011; 10(8):3418-28. DOI:10.1021/pr200482t · 5.00 Impact Factor

Publication Stats

1k Citations
245.11 Total Impact Points

Institutions

  • 2004–2015
    • Fudan University
      • • Institutes of Biomedical Sciences
      • • Department of Chemistry
      Shanghai, Shanghai Shi, China
  • 2002–2008
    • Second Military Medical University, Shanghai
      • International Cooperation Laboratory on Signal Transduction
      Shanghai, Shanghai Shi, China
    • Changhai Hospital, Shanghai
      Shanghai, Shanghai Shi, China
  • 2007
    • Chinese National Human Genome Center at Shanghai
      Shanghai, Shanghai Shi, China
  • 2005–2006
    • Chinese Academy of Sciences
      Peping, Beijing, China