Peng Zhou

Chinese Academy of Tropical Agricultural Sciences, Hoihau, Hainan, China

Are you Peng Zhou?

Claim your profile

Publications (21)37.45 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The interaction of papaya eukaryotic translation initiation factor 3 subunit G (CpeIF3G) with Papaya ringspot virus (PRSV) NIa-Pro was validated using a bimolecular fluorescence complementation assay in papaya protoplasts based on the previous yeast two-hybrid assay results. The C-terminal (residues 133-239) fragment of PRSV NIa-Pro and the central domain (residues 59-167) of CpeIF3G were required for effective interaction between NIa-Pro and CpeIF3G as shown by a Sos recruitment yeast two-hybrid system with several deletion mutants of NIa-Pro and CpeIF3G. The central domain of CpeIF3G, which contains a C2HC-type zinc finger motif, is required to bind to other eIFs of the translational machinery. In addition, quantitative real-time reverse transcription PCR assay confirmed that PRSV infection leads to a 2- to 4.5-fold up-regulation of CpeIF3G mRNA in papaya. Plant eIF3G is involved in various stress response by enhancing the translation of resistance-related proteins. It is proposed that the NIa-Pro-CpeIF3G interaction may impair translation preinitiation complex assembly of defense proteins and interfere with host defense.
    Virus Genes 11/2014; · 1.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Papaya ringspot virus (PRSV) and Papaya leaf distortion mosaic virus (PLDMV), which causes disease symptoms similar to PRSV, threaten commercial production of both non-transgenic-papaya and PRSV-resistant transgenic papaya in China. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay to detect PLDMV was developed previously. In this study, the development of another RT-LAMP assay to distinguish among transgenic, PRSV-infected and PLDMV-infected papaya by detection of PRSV is reported. A set of four RT-LAMP primers was designed based on the highly conserved region of the P3 gene of PRSV. The RT-LAMP method was specific and sensitive in detecting PRSV, with a detection limit of 1.15×10(-6)μg of total RNA per reaction. Indeed, the reaction was 10 times more sensitive than one-step RT-PCR. Field application of the RT-LAMP assay demonstrated that samples positive for PRSV were detected only in non-transgenic papaya, whereas samples positive for PLDMV were detected only in commercialized PRSV-resistant transgenic papaya. This suggests that PRSV remains the major limiting factor for non-transgenic-papaya production, and the emergence of PLDMV threatens the commercial transgenic cultivar in China. However, this study, combined with the earlier development of an RT-LAMP assay for PLDMV, will provide a rapid, sensitive and cost-effective diagnostic power to distinguish virus infections in papaya.
    Journal of virological methods 04/2014; · 2.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Papaya ringspot virus (PRSV), Papaya leaf distortion mosaic virus (PLDMV), and Papaya mosaic virus (PapMV) produce similar symptoms in papaya. Each threatens commercial production of papaya on Hainan Island, China. In this study, a multiplex reverse transcription PCR assay was developed to detect simultaneously these three viruses by screening combinations of mixed primer pairs and optimizing the multiplex RT-PCR reaction conditions. A mixture of three specific primer pairs was used to amplify three distinct fragments of 613 bp from the P3 gene of PRSV, 355 bp from the CP gene of PLDMV, and 205 bp from the CP gene of PapMV, demonstrating the assay's specificity. The sensitivity of the multiplex RT-PCR was evaluated by showing plasmids containing each of the viral target genes with 1.44 × 103, 1.79 × 103, and 1.91 × 102 copies for the three viruses could be detected successfully. The multiplex RT-PCR was applied successfully for detection of three viruses from 341 field samples collected from 18 counties of Hainan Island, China. Rates of single infections were 186/341 (54.5%), 93/341 (27.3%), and 3/341 (0.9%), for PRSV, PLDMV, and PapMV, respectively; 59/341 (17.3%) of the samples were co-infected with PRSV and PLDMV, which is the first time being reported in Hainan Island. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting multiple viruses in papaya and can be used for routine molecular diagnosis and epidemiological studies in papaya.
    Viruses. 01/2014; 6(10):3893-906.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Papaya leaf distortion mosaic virus (PLDMV) can infect transgenic papaya resistant to a related pathogen, Papaya ringspot virus (PRSV), posing a substantial threat to papaya production in China. Current detection methods, however, are unable to be used for rapid detection in the field. Here, a reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the detection of PLDMV, using a set of four RT-LAMP primers designed based on the conserved sequence of PLDMV CP. The RT-LAMP method detected specifically PLDMV and was highly sensitive, with a detection limit of 1.32×10(-6)μg of total RNA per reaction. Indeed, the reaction was 10 times more sensitive than one-step RT-PCR, while also requiring significantly less time and equipment. The effectiveness of RT-LAMP and one-step RT-PCR in detecting the virus were compared using 90 field samples of non-transgenic papaya and 90 field samples of commercialized PRSV-resistant transgenic papaya from Hainan Island. None of the non-transgenic papaya tested positive for PLDMV using either method. In contrast, 19 of the commercialized PRSV-resistant transgenic papaya samples tested positive by RT-LAMP assay, and 6 of those tested negative by RT-PCR. Therefore, the PLDMV-specific RT-LAMP is a simple, rapid, sensitive, and cost-effective tool in the field diagnosis and control of PLDMV.
    Journal of virological methods 10/2013; · 2.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Construction of plasmids is the basic and pivotal technology in molecular biology. The common method for constructing plasmids is to cut DNA fragments by restriction enzymes and then join the resulting fragments using ligase. We present here a modified Golden Gate cloning method for modular construction of plasmids. Unlike the original Golden Gate cloning system for cloning from entry vector to expression vector, this method can be used to construct plasmids immediately from linear DNA fragments. After PCR amplification for flanking with BsaI sites, multiple linear DNA components (modules) can be parallel-assembled into a circle plasmid by a single restriction-ligation reaction using the method. This method is flexible to construct different types of plasmids, since the modules can be freely selected and assembled in any combination. This method was applied successfully to construct a prokaryotic expression plasmid from four modules and a plant expression plasmid from five modules (fragments). The results suggest that this method provides a simple and flexible platform for modular construction of plasmids.
    Analytical Biochemistry 03/2013; · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A chloroplast-localized papaya methionine sulfoxide reductase B1 (PaMsrB1) interacting with Papaya ringspot virus (PRSV) NIa-Pro was identified using a Sos recruitment two-hybrid system (SRS). SRS analysis of several deletion mutants of PRSV NIa-Pro and PaMsrB1 demonstrated that the C-terminal (residues 133-239) fragment of PRSV NIa-Pro and residues 112-175 of PaMsrB1 were necessary for this interaction between PRSV NIa-Pro and PaMsrB1. MsrB1 can repair Met-oxidized proteins damaged by reactive oxygen species (ROS). We confirmed that PRSV infection leads to ROS accumulation and a slight upregulation of level PaMsrB1 mRNA in papaya. This interaction between PaMsrB1 with PRSV NIa-Pro may disturb the import of PaMsrB1 into the chloroplasts. These results suggest that this specific interaction could interfere with PaMsrB1 into the chloroplasts to scavenge ROS caused by PRSV infection. This may be a novel mechanism of PRSV towards the host defense.
    Virology 10/2012; · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A parallel assembly method for multiple site-directed mutagenesis of plasmids was developed here based on Golden Gate cloning. It takes advantage of type IIs restriction enzymes and T4 DNA ligase to assemble multiple DNA fragments into a plasmid by a defined order. This method can accommodate multiple plasmid mutagenesis at any desired position with all three sequence modification types (substitution, deletion, and insertion) simultaneously. Furthermore, it can be used to create otherwise difficult-to-make mutants-larger deletions and insertions and mutagenesis on larger plasmids. The processes of mutagenesis can be completed quickly by a single restriction-ligation reaction.
    Analytical Biochemistry 08/2012; 430(1):65-7. · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate whether cytochalasin D can induce antitumor activities in a tumor model. Murine CT26 colorectal carcinoma cells were cultured in vitro and cytochalasin D was used as a cytotoxic agent to detect its capabilities of inhibiting CT26 cell proliferation and inducing cell apoptosis by MTT and a TUNEL-based apoptosis assay. Murine CT26 tumor model was established to observe the tumor growth and survival time. Tumor tissues were used to detect the microvessel density by immunohistochemistry. In addition, alginate encapsulated tumor cell assay was used to quantify the tumor angiogenesis in vivo. Cytochalasin D inhibited CT26 tumor cell proliferation in time and dose dependent manner and induced significant CT26 cell apoptosis, which almost reached the level induced by the positive control nuclease. The optimum effective dose of cytochalasin D for in vivo therapy was about 50 mg/kg. Cytochalasin D in vivo treatment significantly inhibited tumor growth and prolonged the survival times in CT26 tumor-bearing mice. The results of immunohistochemistry analysis and alginate encapsulation assay indicated that the cytochalasin D could effectively inhibited tumor angiogenesis. Cytochalasin D inhibits CT26 tumor growth potentially through inhibition of cell proliferation, induction of cell apoptosis and suppression of tumor angiogenesis.
    Asian Pacific Journal of Tropical Medicine 03/2012; 5(3):169-74. · 0.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate possible mechanism of toxicarioside A in HS-5 bone stromal cells. HS-5 bone stromal cells were cultured in media supplemented with various concentrations of toxicarioside A or control DMSO (not treatment). Endoglin and TGF-β were detected by Northern and Western blot analysis and quantified in a standard method. Downstream molecules of endoglin and TGF-β (Smad1, Smad2 and their active phosphorylated counterparts, pSmad1 and pSmad2) were also detected and quantified by Western blot analysis. In addition, cell proliferation assay and small interfering RNA (siRNA) against endoglin were used to certificate the function of endolgin in the HS-5 cells. Compared with the not treated (0 μg/mL) or DMSO treated control HS-5 cells, HS-5 cells treated with toxicarioside A were found significant attenuation of endolgin and TGF-β expression. Significant inhibition of cell proliferation was also found in the HS-5 cells treated with toxicarioside A. ALK1-related Smad1 and ALK5-related Smad2 were decreased in HS-5 cells treated with toxicarioside A. In addition, phosphorylated Smad1 (pSmad1) and Smad2 (pSmad2) were also found attenuation in toxicarioside A-treated HS-5 cells. RNA interference showed that blockage of endoglin by siRNA also decreased Smad1 and Smad2 expression in HS-5 cells. Our results indicate that toxicarioside A can influence bone marrow stromal HS-5's function and inhibit HS-5 cell proliferation by alteration of endoglin-related ALK1 (Smad1) and ALK5 (Smad2) signaling.
    Asian Pacific Journal of Tropical Medicine 02/2012; 5(2):91-7. · 0.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the wide use of double-stranded RNA interference (RNAi) for the analysis of gene function in plants, a high-throughput system for making hairpin RNA (hpRNA) constructs is in great demand. Here, we describe a novel restriction-ligation approach that provides a simple but efficient construction of intron-containing hpRNA (ihpRNA) vectors. The system takes advantage of the type IIs restriction enzyme BsaI and our new plant RNAi vector pRNAi-GG based on the Golden Gate (GG) cloning. This method requires only a single PCR product of the gene of interest flanked with BsaI recognition sequence, which can then be cloned into pRNAi-GG at both sense and antisense orientations simultaneously to form ihpRNA construct. The process, completed in one tube with one restriction-ligation step, produced a recombinant ihpRNA with high efficiency and zero background. We demonstrate the utility of the ihpRNA constructs generated with pRNAi-GG vector for the effective silencing of various individual endogenous and exogenous marker genes as well as two genes simultaneously. This method provides a novel and high-throughput platform for large-scale analysis of plant functional genomics.
    PLoS ONE 01/2012; 7(5):e38186. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To obtain fbpB-esxA fusing gene of Mycobacterium tuberculosis (MTB), express the encoded fusing protein in Escherichia coli (E. coli), identify protein acquired, and predict the structure and function of the protein utilizing methods of bioinformatics. fbpB and esxA gene were amplified from genome of MTB H37Rv by PCR. The fbpB-esxA fusing gene ligated by (Gly(4)Ser)(3) linker was gained by means of Gene Splicing by Overlapping Extension PCR (SOE-PCR), and fusing gene was cloned into expression vector pET-30a. The recombinant plasmid was sequenced and expressed in E. coli BL21(DE3). The protein was identified by Western blot using anti-HIS antibody. Secondary structure and antigenic epitopes of the protein were predicting using tools of bioinformatics. The DNA sequences of fbpB-esxA were identical with that published by GenBank. The Ag85B-ESAT-6 fusion protein about 50 kDa comprised 485 amino acids was efficiently produced from expression system in E. coli BL21(DE3) under the induction of IPTG. Bioinformatics analysis showed the protein contained one transmembrane region and fourteen potential antigenic epitopes. The Ag85B-ESAT-6 fusion protein is successfully expressed with N-terminal HIS-tag. Gel filtration demonstrated that it exists as insoluble inclusion bodies mainly. The existence of linker doesn't affect immunogenicity of Ag85B and ESAT-6. It will allow for characterization in vitro and establish a foundation of further function research such as vaccine or diagnostic reagent.
    Asian Pacific Journal of Tropical Medicine 07/2011; 4(7):530-4. · 0.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To clone and express Rv3265c gene of Mycobacterium tuberculosis in Escherichia coli (E. coli) under optimistic conditions, obtain and identify protein expressed, analyze the structure and characteristics of the protein using bioinformatics methods for future applications. Rv3265c gene from Mycobacterium tuberculosis H37Rv was amplified by polymerase chain reaction, and was cloned into the pET-30a vector after purification and recovery. The recombinant plasmid was sequenced and expressed in E. coli BL21(DE3), and then purified and identified by western blotting. The essential physical-chemical properties of the protein were predicated by bioinformatics tools, including subcellular location, secondary structure, domains, antigenic epitopes, etc. Tertiary structure of the protein based on homology modeling was established, while multi-sequence homological alignment and phylogenetic analysis were proformed. The recombinant protein was obtained in soluble fraction from expression system in E. coli BL21(DE3) carrying pET30- Rv3265c plasmid, and Rv3265c gene was expressed correctly. Bioinformatics analysis showed the protein contained no signal peptide and transmembrane helices, located outside of membrane. Secondary structure analysis revealed it contained α-helix, extended strand and random coil, 46.8%, 14.6%, 38.6%, respectively. Furthermore, it possessed six potential antigenic epitopes, one glycosyl transferase domain. A simple three-dimensional model of this protein was constructed by Swiss-model sever. Both sequences and structures were conservative and especial either in gene or in protein. Rv3265c gene might be a desirable molecular target for anti-tuberculosis drug and vaccine. The purified protein from expression will be utilized to study the kinetics of L-rhamnosyltransferase and to develope an enzyme assay for screening vaccine or drug.
    Asian Pacific Journal of Tropical Medicine 04/2011; 4(4):266-70. · 0.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Suppression subtracted hybridization (SSH) and dot blotting were used to identify differential gene expression in the mesocarp and kernel of oil palm nuts. The different types of nut tissue show differences in fatty acid anabolism and the synthesis of other important compounds. In total, 302 clones from forward SSH libraries and 238 clones from reverse SSH libraries were identified following differential screening, respectively. Among these, 120 clones from the forward SSH library and 81 clones from the reverse SSH library, showed tenfold or more differential expression levels, and were sequenced. Sequence analysis revealed that 76 clones (28 from the forward SSH library and 48 from the reverse SSH library) represent non-redundant cDNA inserts. The differential expression of 39 subset genes in the two different tissues was further confirmed by RT-PCR analysis. Functionally annotated blasting against the GenBank non-redundant protein database classified all 76 candidate genes into six categories, according to their putative functions. Interestingly, our results show that a group of significantly differentially expressed genes are involved in processes associated with oil palm nut maturation, such as the synthesis of medium-chain saturated fatty acids and phytic acid, nut development, and stress/defense responses. This study describes some relationships between gene expression and metabolic pathways in mature oil palm nuts, and contributes to our understanding of oil palm nut ESTs. KeywordsMesocarp–Kernel–Oil palm (Elaeis guineensis Jacq.)–Real-time PCR–Suppression subtracted hybridization
    Tree Genetics & Genomes 01/2011; 7(5):999-1010. · 2.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As one of the key tropical crops, coconut (Cocos nucifera L.) is a member of the monocotyledonous family Aracaceae (Palmaceae). In this study, we amplified the upstream region of an endosperm-specific expression gene, Lysophosphatidyl acyltransferase (LPAAT), from the coconut genomic DNA by chromosome walking. In this sequence, we found several types of promoter-related elements including TATA-box, CAAT-box and Skn1-motif. In order to further examine its function, three different 5'-deletion fragments were inserted into pBI101.3, a plant expression vector harboring the LPAAT upstream sequence, leading to pBI101.3-L1, pBI101.3-L2 and pBI101.3-L3, respectively. We obtained transgenic plants of rice by Agrobacterium-mediated callus transformation and plant regeneration and detected the expression of gus gene by histochemical staining and fluorometric determination. We found that gus gene driven by the three deletion fragments was specifically expressed in the endosperm of rice seeds, but not in the empty vector of pBI101.3 and other tissues. The highest expression level of GUS was at 15 DAF in pBI101.3-L3 and pBI101.3-L2 transgenic lines, while the same level was detected at 10 DAF in pBI101.3-L1. The expression driven by the whole fragment was up to 1.76- and 2.8-fold higher than those driven by the -817 bp and -453 bp upstream fragments, and 10.7-fold higher than that driven by the vector without the promoter. Taken together, our results strongly suggest that these promoter fragments from coconut have a significant potential in genetically improving endosperm in main crops.
    Plant Cell Reports 09/2010; 29(9):1061-8. · 2.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Potyviral helper component-proteinase (HC-Pro) is a multifunctional protein involved in plant-virus interactions. In this study, we constructed a Carica papaya L. plant cDNA library to investigate the host factors interacting with Papaya ringspot virus (PRSV) HC-Pro using a Sos recruitment two-hybrid system (SRS). We confirmed that the full-length papaya calreticulin, designated PaCRT (GenBank accession no. FJ913889), interacts specifically with PRSV HC-Pro in yeast, in vitro and in plant cells using SRS, in vitro protein-binding assay and bimolecular fluorescent complementation assay, respectively. SRS analysis of the interaction between three PaCRT deletion mutants and PRSV HC-Pro demonstrated that the C-domain (residues 307-422), with a high Ca(2+)-binding capacity, was responsible for binding to PRSV HC-Pro. In addition, quantitative real-time reverse transcriptase-polymerase chain reaction assay showed that the expression of PaCRT mRNA was significantly upregulated in the primary stage of PRSV infection, and decreased to near-basal expression levels in noninoculated (healthy) papaya plants with virus accumulation inside host cells. PaCRT is a new calcium-binding protein that interacts with potyviral HC-Pro. It is proposed that the upregulated expression of PaCRT mRNA may be an early defence-related response to PRSV infection in the host plant, and that interaction between PRSV HC-Pro and PaCRT may be involved in plant calcium signalling pathways which could interfere with virus infection or host defence.
    Molecular Plant Pathology 05/2010; 11(3):335-46. · 3.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: RNA silencing has been adopted to develop virus-resistant plants through expression of virus-derived hairpin RNAs. Due to the high sequence specificity of RNA silencing, this technology has been limited to the targeting of single viruses. Simultaneous targeting of multiple viruses or plant genes can be achieved by using a chimeric cassette. In this study, a simple method was developed to construct chimeric hairpin RNA rapidly and efficiently. This method splices two DNA fragments from viruses or plant genes to be a chimeric sequence using Overlap Extension PCR (OE-PCR); then this chimeric sequence was assembled with an intron sequence to generate an intron-containing hairpin RNA construct in one step mediated by OE-PCR. This method is neither dependent on restriction enzymes nor requires expensive consumables, so a chimeric hairpin RNA can be constructed rapidly and costlessly. Two chimeric hairpin RNA constructs were amplified successfully using this method, with the targeting sequences from both papaya ringspot virus (PRSV) and two plant genes encoding translation initiation factors eIF4E and eIFiso4E. This novel method is a useful strategy to construct chimeric hairpin RNA for RNA silencing in plants.
    Journal of virological methods 03/2010; 166(1-2):101-5. · 2.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: House dust mites live in house dusts and affect the health of humans. Among the many species, Dermatophagoides farinae, D. pteronyssinus, and Euroglyphus maynei have been found to be commonly associated with Ig-E-mediated allergic diseases. As a result, there is increasing effort to develop methods for the diagnosis and treatment of diseases caused by these species. The purpose of the current study was to explore the evolutionary relationships among house dust mites. After adult D. farinae were separated and isolated for total RNA extract, the cDNA coding for Der f 1 and Der f 2 were cloned and sequenced. Then amino acid sequences for group 1 and 2 allergens of two of the most common house dust mites, D. pteronyssinus, E. maynei, were obtained from databases. Interestingly, homological analysis of amino acid sequences showed that both Der p 1 and Der p 2 from D. pteronyssinus had more similarities to Eur m 1 and Eur m 2, respectively, than they had to Der f 1 and Der f 2 from D. farinae. In the phylogenetic trees, D. pteronyssinus clustered with E. maynei, but not with D. farinae, although D. pteronyssinus and D. farinae belong to the same genus according to morphological taxonomy. It was previously assumed that D. pteronyssinus was more similar to E. maynei than to D. farinae at evolutionary levels.
    Central European Journal of Medicine 01/2010; 5(1):69-74. · 0.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hairpin RNA (hpRNA) is commonly used for gene-function exploration and gene engineering. In this study, a novel method was developed to construct intron-containing hairpin RNA (ihpRNA) rapidly and efficiently based on Overlap Extension PCR (OE-PCR). This method, Mixed One-step OE-PCR (MOOE-PCR), can amplify two inverted repeats of DNA fragments and a spliceable intron in parallel, and then assemble them to generate ihpRNA constructs in the same tube without the purification of intermediate products. This method required a PCR process of 38-40 cycles and ordinary PCR reagents. A total of 10 ihpRNA constructs were amplified successfully using this method, with the stems ranging from 50bp to 484bp in length. Our results suggest that this novel method is a useful strategy for constructing ihpRNA.
    Biochemical and Biophysical Research Communications 05/2009; 383(4):464-8. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The expression of antigens in transgenic plants has increasingly been used as an alternative to the classical methodologies for the development of experimental vaccines, and it remains one of the real challenges in this field to use transgenic plant-based vaccines effectively as feedstuff additives. We report herein the development of a new oral immunization system for foot and mouth disease with the structural protein VP1 of the foot and mouth disease virus (FMDV) produced in transgenic Stylosanthes guianensis cv. Reyan II. The transgenic plantlets were identified by polymerase chain reaction (PCR), Southern blotting, and northern blotting; and the production of VP1 protein in transgenic plants was confirmed and quantified by western blotting and enzyme-linked immunosorbent assays (ELISA). Six transformed lines were obtained, and the level of the expressed protein was 0.1-0.5% total soluble protein (TSP). Mice that were orally immunized using studded feedstuff mixed with desiccated powder of the transgenic plants developed a virus-specific immune response to the structural VP1 and intact FMDV particles. To our knowledge, this is the first report of transgenic plants expressing the antigen protein of FMDV as feedstuff additives that has demonstrated the induction of a protective systemic antibody response in animals. These results support the feasibility of producing edible vaccines from transgenic forage plants, and provide proof of the possibility of using plant-based vaccines as feedstuff additives.
    Transgenic Research 12/2008; 17(6):1163-70. · 2.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study aimed to characterize the group 2 allergens of the house dust mite Dermatophagoides farinae (Der f 2) from Hainan Island, a tropical region in Southeastern China. We cloned and sequenced cDNA coding for Der f 2 and found an additional region of 87 base pairs (bp) (from +77 to +163 bp) in our strain that was absent in the reference sequence (GenBank AB195580) used for primer design. However, the BLAST analysis identified the same sequence in strains reported from Reinbek, Germany, and Guangzhou, China. A phylogenetic tree was constructed using the Der f 2 nucleotide sequences from different regions or countries and showed that the Hainan sequence clustered with the strains from Reinbek and Guangzhou. Analysis of the translated amino acid sequence suggests that the encoded peptide is hydrophobic and extracellular with a cleavage site between the 17th and 18th amino acid residues and contains a strong trans-membrane helix from the 6th amino acid to the 24th amino acid, indicating a MD-2-related lipid recognition domain in this protein. Furthermore, the secondary structure of the pro-protein consists of 16.57% alpha helix, 32.57% extended strand and 50.86% random coil. In brief, we obtained a gene coding for Der f 2 and predicted the molecular characteristics of this protein using bioinformatics tools. Our analysis identified that this gene showed several significant differences to those reported previously.
    Asian Pacific journal of allergy and immunology / launched by the Allergy and Immunology Society of Thailand 01/2008; 25(4):199-206. · 0.79 Impact Factor