Qinghua Zhang

Ruijin Hospital North, Shanghai, Shanghai Shi, China

Are you Qinghua Zhang?

Claim your profile

Publications (9)35.16 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A widely held viewpoint is that the use of multiple markers, combined in some type of algorithm, will be necessary to provide high enough discrimination between diseased cases and non-diseased. We applied stepwise logistic regression analysis to identify the best combination of the 32 biomarkers at chromosome 8q on an independent public microarray test set of 80 paired gastric samples. A combination of SULF1, INTS8, ATP6V1C1, and GPR172A was identified with a prediction accuracy of 98.0% for discriminating carcinomas from adjacent noncancerous tissues in our previous 25 paired samples. Interestingly, the overexpression of SULF1 was associated with tumor invasion and metastasis. Function prediction analysis revealed that the 4-marker panel was mainly associated with acidification of intracellular compartments. Taken together, we found a 4-gene panel that accurately discriminated gastric carcinomas from adjacent noncancerous tissues and these results had potential clinical significance in the early diagnosis and targeted treatment of gastric cancer.
    Genomics 05/2013; · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To get more understanding of the molecular mechanisms underlying gastric cancer, 25 paired samples were applied to gene expression microarray analysis. Here, expression microarray, quantitative reverse transcription-PCR (qRT-PCR) and immunohistochemical analysis indicated that GPRC5A was significantly elevated in gastric cancer tissues. The integrative network analysis of deregulated genes generated eight subnetworks. We also mapped copy number variations (CNVs) and associated mRNA expression changes into pathways and identified WNT, RTK-Ras-PI3K-AKT, NF-κB, and PLAU-JAK-STAT pathways involved in proliferation, evading apoptosis and sustained angiogenesis, respectively. Taken together, our results reveal several interesting genes including GPRC5A as potential biomarkers for gastric cancer, and highlight more systematical insight of deregulated genes in genetic pathways of gastric carcinogenesis.
    Cancer letters 08/2012; 326(1):105-13. · 5.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To elucidate gene expression associated with copy number changes, we performed a genome-wide copy number and expression microarray analysis of 25 pairs of gastric tissues. We applied laser capture microdissection (LCM) to obtain samples for microarray experiments and profiled DNA copy number and gene expression using 244K CGH Microarray and Human Exon 1.0 ST Microarray. Obviously, gain at 8q was detected at the highest frequency (70%) and 20q at the second (63%). We also identified molecular genetic divergences for different TNM-stages or histological subtypes of gastric cancers. Interestingly, the C20orf11 amplification and gain at 20q13.33 almost separated moderately differentiated (MD) gastric cancers from poorly differentiated (PD) type. A set of 163 genes showing the correlations between gene copy number and expression was selected and the identified genes were able to discriminate matched adjacent noncancerous samples from gastric cancer samples in an unsupervised two-way hierarchical clustering. Quantitative RT-PCR analysis for 4 genes (C20orf11, XPO5, PUF60, and PLOD3) of the 163 genes validated the microarray results. Notably, some candidate genes (MCM4 and YWHAZ) and its adjacent genes such as PRKDC, UBE2V2, ANKRD46, ZNF706, and GRHL2, were concordantly deregulated by genomic aberrations. Taken together, our results reveal diverse chromosomal region alterations for different TNM-stages or histological subtypes of gastric cancers, which is helpful in researching clinicopathological classification, and highlight several interesting genes as potential biomarkers for gastric cancer.
    BMC Medical Genomics 05/2012; 5:14. · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Electroacupuncture (EA) has been widely used to alleviate diverse pains. Accumulated clinical experiences and experimental observations indicated that significant differences exist in sensitivity to EA analgesia for individuals of patients and model animals. However, the molecular mechanism accounting for this difference remains obscure. We classified model male rats into high-responder (HR; TFL changes >150) and non-responder (NR; TFL changes ≤ 0) groups based on changes of their pain threshold detected by tail-flick latency (TFL) before and after 2 Hz or 100 Hz EA treatment. Gene expression analysis of spinal dorsal horn (DH) revealed divergent expression in HR and NR after 2 Hz/100 Hz EA. The expression of the neurotransmitter system related genes was significantly highly regulated in the HR animals while the proinflammation cytokines related genes were up-regulated more significantly in NR than that in HR after 2 Hz and 100 Hz EA stimulation, especially in the case of 2 Hz stimulation. Our results suggested that differential regulation and coordination of neural-immune related genes might play an important role for individual variations in analgesic effects responding to EA in DH. It also provided new candidate genes related to EA responsiveness for future investigation.
    PLoS ONE 01/2012; 7(8):e42331. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There are conflicting reports regarding the function of EFEMP1 in different cancer types. In this study, we sought to evaluate the role of EFEMP1 in malignant glioma biology. Real-time qRT-PCR was used to quantify EFEMP1 expression in 95 glioblastoma multiforme (GBM). Human high-grade glioma cell lines and primary cultures were engineered to express ectopic EFEMP1, a small hairpin RNA of EFEMP1, or treated with exogenous recombinant EFEMP1 protein. Following treatment, growth was assayed both in vitro and in vivo (subcutaneous (s.c.) and intracranial (i.c.) xenograft model systems). Cox regression revealed that EFEMP1 is a favorable prognostic marker for patients with GBM. Over-expression of EFEMP1 eliminated tumor development and suppressed angiogenesis, cell proliferation, and VEGFA expression, while the converse was true with knock-down of endogenous EFEMP1 expression. The EFEMP1 suppression of tumor onset time was nearly restored by ectopic VEGFA expression; however, overall tumor growth rate remained suppressed. This suggested that inhibition of angiogenesis was only partly responsible for EFEMP1's impact on glioma development. In glioma cells that were treated by exogenous EFEMP1 protein or over-expressed endogenous EFEMP1, the EGFR level was reduced and AKT signaling activity attenuated. Mixing of EFEMP1 protein with cells prior to s.c. and i.c. implantations or injection of the protein around the established s.c. xenografts, both significantly suppressed tumorigenicity. Overall, our data reveals that EEFEMP1 suppresses glioma growth in vivo, both by modulating the tumor extracellular microenvironment and by altering critical intracellular oncogenic signaling pathways.
    Molecular Cancer 09/2011; 10:123. · 5.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Excessive energy intake greatly contributes to the development of nonalcoholic fatty liver disease (NAFLD) in modern society. To better understand the comprehensive mechanisms of NAFLD development, we investigated the metabolic alterations of rats with NAFLD induced by high-fat diet (HFD). Male Wistar rats were fed a HFD or standard chow for control. After 16 weeks, rat serum was collected for biochemical measurement. The rats' livers were resected and subjected to histology inspection and gene expression analysis with complementary DNA microarray and metabolic analysis with gas chromatography-mass spectroscopy. In HFD rats, the serum cholesterol, triglycerides, glucose, and insulin contents were increased; and the total cholesterol and triglycerides in the livers were also significantly increased. Complementary DNA microarray analysis revealed that 130 genes were regulated by HFD. Together with real-time reverse transcriptase polymerase chain reaction, lipid metabolism regulatory members like sterol regulatory element binding factor 1 and stearoyl-coenzyme A desaturase 1 had up-regulation, whereas others like peroxisome proliferator-activated receptor, carnitine palmitoyltransferase 1, and 3-hydroxy-3-methylglutaryl-coenzyme A reductase had repressed expression, in HFD rat livers. Metabolomic analysis showed that tetradecanoic acid, hexadecanoic acid, and oleic acid had elevation and arachidonic acid and eicosapentaenoic acid had decreased content in HFD rat livers. Amino acids including glycine, alanine, aspartic acid, glutamic acid, and proline contents were decreased. The integrative results from transcriptomic and metabolomic studies revealed that, in HFD rat livers, fatty acid utilization through beta-oxidation was inhibited and lipogenesis was enhanced. These observations facilitated our understanding of the pathways involved in the development of NAFLD induced by HFD.
    Metabolism: clinical and experimental 11/2009; 59(4):554-60. · 3.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leaf extract of Ginkgo biloba (GBE) is increasingly used as a herbal medicine for the treatment of neurodegenerative, cardiovascular and cerebrovascular diseases. Several studies have demonstrated many protective effects of GBE in neurons, the endothelium and liver. In this study, we investigated the molecular mechanisms underlying the effects of GBE in disorders induced by long-term exposure to a high-fat diet (HFD). Rats were fed an HFD with or without the GBE product GBE50 for 19 weeks. We found that GBE50 reduced the development of fatty liver induced by an HFD and inhibited the commonly observed elevation of serum cholesterol and lactate dehydrogenase levels. Transcriptome profiling analysis showed that several genes were modulated by GBE50 in liver, including those involved in lipid metabolism, carbohydrate metabolism, vascular constriction, ion transportation, neuronal systems and drug metabolism. Notably, a number of genes coding for proteins involved in cholesterol metabolism were repressed, and some were upregulated. Fatty acid biosynthesis appeared to be repressed, whereas fatty acid metabolism appeared to be enhanced. In conclusion, using transcriptome profiling analysis, we demonstrated the molecular basis for the pleiotropic effects of GBE50, particularly those involved in lipid metabolism. This study provided new clues for further pharmacological study of GBEs.
    FEBS Journal 02/2009; 276(5):1450-8. · 4.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rodents respond to chronic high fat diet in at least two ways: some of them may readily gain body weight and become obese (termed obesity-prone, OP), and others may not (termed obesity-resistant, OR). Transcriptomic and metabonomic profiling of OP and OR rats has been conducted, showing two sets of significantly different phenotypic profiles in response to 16 weeks of high fat diet. We observed significant differences in transcriptional expression of nearly 80 genes, some of which are known to be involved in lipid metabolism, transport, and ketone body production. The different metabolic profiles in liver tissue extracts, serum, and urine between the two phenotypes can be ascribed to the corresponding pathways identified with multivariate statistical analysis, including fatty acid metabolism, Krebs cycle, and amino acid metabolism. The integration of results from transcriptomic and metabonomic studies revealed that the altered metabolic pathways in OP rats may involve the increased activity of sympathetic nervous system and Krebs cycle, an increased production of ketone bodies, and an adaptive regulatory process to store excessive lipids in liver through reverse cholesterol transport process. These biochemical variations at transcriptional and metabolic levels as a result of dietary intervention highlight the significance of combined "omics" strategy in the mechanistic study of obesity and metabolic disorders.
    Journal of Proteome Research 11/2008; 7(11):4775-83. · 5.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cDNA of a Schistosoma japonicum myophilin-like protein was cloned, sequenced, and expressed in Escherichia coli as a recombined protein (rSj myophilin-like protein), and the protein was purified by affinity chromatography. The deduced amino acid sequences of the Sj myophilin-like protein showed significant homology to myophilin, calponin, Np22 and Mp20. Northern blot and RT-PCR analyzes revealed expression of the Sj myophilin-like protein mRNA in eggs, sporocysts, cercariae, hepatic schistosomula and adult worms. Confocal fluorescence microscopy localized the native protein to the muscle of the adult worm. In schistosome-infected rabbits, the rSj myophilin-like protein antibody level, assessed by ELISA, was elevated after infection but was reduced after praziquantel treatment. In humans, the myophilin-like protein antibody level was evaluated by ELISA in sera from 33 non-infected humans and 61 schistosomiasis patients; the results showed a highly significant difference between the two groups with a sensitivity of 57.4%. Taken together, the myophilin-like protein may prove useful for monitoring the therapeutic effect of praziquantel rather than in serodiagnosis of schistosomiasis.
    Experimental Parasitology 06/2008; 119(1):117-24. · 2.15 Impact Factor