Are you Q Wang?

Claim your profile

Publications (2)17.17 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence suggests that the Myc and Mad1 proteins are implicated in the regulation of the gene encoding the human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase. We have analyzed the in vivo interaction between endogenous c-Myc and Mad1 proteins and the hTERT promoter in HL60 cells with the use of the chromatin immunoprecipitation assay. The E-boxes at the hTERT proximal promoter were occupied in vivo by c-Myc in exponentially proliferating HL60 cells but not in cells induced to differentiate by DMSO. In contrast, Mad1 protein was induced and bound to the hTERT promoter in differentiated HL60 cells. Concomitantly, the acetylation of the histones at the promoter was significantly reduced. These data suggest that the reciprocal E-box occupancy by c-Myc and Mad1 is responsible for activation and repression of the hTERT gene in proliferating and differentiated HL60 cells, respectively. Furthermore, the histone deacetylase inhibitor trichostatin A inhibited deacetylation of histones at the hTERT promoter and attenuated the repression of hTERT transcription during HL60 cell differentiation. In addition, trichostatin A treatment activated hTERT transcription in resting human lymphocytes and fibroblasts. Taken together, these results indicate that acetylation/deacetylation of histones is operative in the regulation of hTERT expression.
    Proceedings of the National Academy of Sciences 04/2001; 98(7):3826-31. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The p53 tumor suppressor protein inhibits the formation of tumors through induction of cell cycle arrest and/or apoptosis. In the present study we demonstrated that p53 is also a powerful inhibitor of human telomerase reverse transcriptase (hTERT), a key component for telomerase. Activation of either exogenous temperature-sensitive (ts) p53 in BL41 Burkitt lymphoma cells or endogenous wild type (wt) p53 at a physiological level in MCF-7 breast carcinoma cells triggered a rapid downregulation of hTERT mRNA expression, independently of the induction of the p53 target gene p21. Co-transfection of an hTERT promoter construct with wt p53 but not mutant p53 in HeLa cells inhibited the hTERT promoter activity. Furthermore, the activation of the hTERT promoter in Drosophila Schneider SL2 cells was completely dependent on the ectopic expression of Sp1 and was abrogated by wt p53. Finally, wt p53 inhibited Sp1 binding to the hTERT proximal promoter by forming a p53-Sp1 complex. Since activation of telomerase, widely observed in human tumor cell lines and primary tumors, is a critical step in tumorigenesis, wt p53-triggered inhibition of hTERT/telomerase expression may reflect yet another mechanism of p53-mediated tumor suppression. Our findings provide new insights into both the biological function of p53 and the regulation of hTERT/telomerase expression.
    Oncogene 11/2000; 19(45):5123-33. · 7.36 Impact Factor