Partha Mukhopadhyay

National Institute on Alcohol Abuse and Alcoholism, Роквилл, Maryland, United States

Are you Partha Mukhopadhyay?

Claim your profile

Publications (84)434.25 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alcoholic steatohepatitis (ASH) is the progressive form of alcoholic liver disease and may lead to cirrhosis and hepatocellular carcinoma. We studied mouse models and human tissues to identify molecules associated with ASH progression, and focused on mouse fat-specific protein 27 (FSP-27)/human cell death-inducing DFF45-like effector C (CIDEC) protein, which is expressed in white adipose tissues and promotes formation of fat droplets. C57BL/6N mice or mice with hepatocyte-specific disruption of Fsp27 (Fsp27(Hep-/-) mice) were fed the Lieber-Decarli ethanol liquid diet (5% ethanol) for 10 days to 12 weeks, followed by 1 or multiple binges of ethanol (5 or 6 g/kg) during the chronic feeding. Some mice were given an inhibitor of the peroxisome proliferator-activated receptor-γ (PPARG) (GW9662). Adenoviral vectors were used to express transgenes or small hairpin (sh) RNAs in cultured hepatocytes and in mice. Liver tissue samples were collected from ethanol-fed mice or from 31 patients with alcoholic hepatitis (AH) with biopsy-proved ASH and analyzed by histologic, immunohistochemical, transcriptome, immunoblot, and real-time PCR analyses. Chronic-plus-binge ethanol feeding of mice, which mimics the drinking pattern of patients with AH, produced severe ASH and mild fibrosis. Microarray analyses revealed similar alterations in expression of many hepatic genes in ethanol-fed mice and humans with ASH, including upregulation of mouse Fsp27 (also called Cidec) and human CIDEC. Fsp27(Hep-/-) mice and mice given injections of adenovirus-Fsp27shRNA had markedly reduced ASH following chronic-plus-binge ethanol feeding. Inhibition of PPARG and cyclic AMP-responsive element binding protein H (CREBH) prevented the increases in Fsp27α and FSP27β mRNAs, respectively, and reduced liver injury in this chronic-plus-binge ethanol feeding model. Overexpression of FSP27 and ethanol exposure had synergistic effects in inducing production of mitochondrial reactive oxygen species and damage to hepatocytes in mice. Hepatic CIDEC mRNA expression was increased in patients with AH and correlated with the degree of hepatic steatosis and disease severity including mortality. In mice, chronic-plus-binge ethanol feeding induces ASH that mimics some histological and molecular features observed in patients with AH. Hepatic expression of FSP27/CIDEC is highly upregulated in mice following chronic-plus-binge ethanol feeding and in patients with AH; this upregulation contributes to alcohol-induced liver damage. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.
    Gastroenterology 06/2015; DOI:10.1053/j.gastro.2015.06.009 · 13.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocellular carcinoma (HCC) has high mortality and no adequate treatment. Endocannabinoids interact with hepatic CB1 receptors (CB1R) to promote hepatocyte proliferation in liver regeneration via inducing cell-cycle proteins involved in mitotic progression, including Forkhead Box M1 (FOXM1). Because FOXM1 is highly expressed in HCC and contributes to its genesis and progression, we analyzed the involvement of the endocannabinoid/CB1R system in murine and human HCC. Postnatal diethylnitrosamine (DEN) treatment induced HCC within 8 months in wild-type mice, but fewer and smaller tumors in CB1R-/- mice or in wild-type mice treated with the peripheral CB1R antagonist JD5037, as monitored in vivo by serial magnetic resonance imaging. Genome-wide transcriptome analysis revealed CB1R-dependent, tumor-induced upregulation of the hepatic expression of CB1R, its endogenous ligand anandamide, and a number of tumor promoting genes, including the GRB2 interactome as well as FOXM1 and its downstream target the tryptophan-catalyzing enzyme indoleamine 2,3-dioxygenase (IDO2). Increased IDO2 activity and consequent induction of immunosuppressive Treg cells in tumor tissue promote immune tolerance. Conclusion: The endocannabinoid/CB1R system is upregulated in chemically induced HCC resulting in the induction of various tumor promoting genes, including IDO2, and attenuation of these changes by blockade or genetic ablation of CB1R suppresses the growth of HCC and highlights the therapeutic potential of peripheral CB1R blockade. This article is protected by copyright. All rights reserved.
    Hepatology 01/2015; 61(5). DOI:10.1002/hep.27686 · 11.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells, and cell death. Cannabidiol is a non-psychotropic constituent of marijuana, which is well-tolerated in humans, with antioxidant, anti-inflammatory, and recently discovered antitumor properties. We aimed to explore the effects of cannabidiol in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly(ADP)-ribose polymerase 1-dependent), and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities), and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with cannabidiol markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. Cannabidiol also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that cannabidiol may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Poly (ADP-ribose) polymerase 1 (PARP-1) is a constitutive enzyme, the major isoform of PARP family, which is involved in the regulation of DNA repair, cell death, metabolism, and inflammatory responses. Pharmacological inhibitors of PARP provide significant therapeutic benefits in various preclinical disease models associated with tissue injury and inflammation. However, our understanding the role of PARP activation in the pathophysiology of liver inflammation and fibrosis is limited. In this study we have investigated the role of PARP-1 in the liver inflammation and fibrosis using acute and chronic models of CCl4 -induced liver injury and fibrosis, a model of bile duct ligation (BDL)-induced hepatic fibrosis in vivo, and isolated liver-derived cells ex vivo. Pharmacological inhibition of PARP with structurally distinct inhibitors or genetic deletion of PARP-1 markedly attenuated CCl4 -induced hepatic cell death, inflammation, and fibrosis. Interestingly, the chronic CCl4 -induced liver injury was also characterized by mitochondrial dysfunction and dysregulation of numerous genes involved in metabolism. Most of these pathological changes were attenuated by PARP inhibitors. PARP inhibition not only prevented CCl4 -induced chronic liver inflammation and fibrosis, but was also able to reverse these pathological processes. PARP inhibitors also attenuated the development of BDL-induced hepatic fibrosis in mice. In liver biopsies of subjects with alcoholic or hepatitis B-induced cirrhosis, increased nitrative stress and PARP activation was noted. These results, taken together, suggest that the reactive oxygen/nitrogen species-PARP pathway plays a pathogenetic role in the development of liver inflammation, metabolism and fibrosis. Several PARP inhibitors are currently in clinical trials for oncological indications. The current results indicate that liver inflammation and liver fibrosis may be additional clinical indications where PARP inhibition may be of translational potential.
    Hepatology 05/2014; 59(5). DOI:10.1002/hep.26763 · 11.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Treatment with trastuzumab, a humanized monoclonal antibody directed against the extracellular domain of Human Epidermal Growth Factor Receptor 2 (HER2), very successfully improves outcomes for women with HER2-positive breast cancer. However, trastuzumab treatment was recently linked to potentially irreversible serious cardiotoxicity, the mechanisms of which are largely elusive. This study reports that trastuzumab significantly alters the expression of myocardial genes essential for DNA repair, cardiac and mitochondrial functions, which is associated with impaired left ventricular performance in mice coupled with significant ultrastructural alterations in cardiomyocytes revealed by electron microscopy. Furthermore, trastuzumab treatment also promotes oxidative stress and apoptosis in myocardium of mice, and elevates serum levels of cardiac troponin-I (cTnI) and cardiac myosin light chain-1 (cMLC1). The elevated serum levels of cMLC1 in mice treated with trastuzumab highlights the potential that cMLC1 could be a useful biomarker for trastuzumab-induced cardiotoxicity.
    PLoS ONE 11/2013; 8(11):e79543. DOI:10.1371/journal.pone.0079543 · 3.23 Impact Factor
  • Partha Mukhopadhyay · Enkui Hao · Zongxian Cao · Eileen Holovac · Katalin Erdelyi · Pal Pacher
    Free Radical Biology and Medicine 11/2013; 65:S79. DOI:10.1016/j.freeradbiomed.2013.10.582 · 5.71 Impact Factor
  • Source
    Pál Pacher · Takahiro Nagayama · Partha Mukhopadhyay · Sándor Bátkai · David A Kass
  • Source
    Pál Pacher · Takahiro Nagayama · Partha Mukhopadhyay · Sándor Bátkai · David A Kass
  • Source
    Pál Pacher · Takahiro Nagayama · Partha Mukhopadhyay · Sándor Bátkai · David A Kass
  • Source
    Pál Pacher · Takahiro Nagayama · Partha Mukhopadhyay · Sándor Bátkai · David A Kass
  • Source
    Dataset: cvp369supp
  • Source
    Pál Pacher · Takahiro Nagayama · Partha Mukhopadhyay · Sándor Bátkai · David A Kass
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND & AIMS: The endocannabinoid and eicosanoid lipid signaling pathways have important roles in inflammatory syndromes. Monoacylglycerol lipase (MAGL) links these pathways, hydrolyzing the endocannabinoid 2-arachidonoylglycerol to generate the arachidonic acid precursor pool for prostaglandin production. We investigated whether blocking MAGL protects against inflammation and damage from hepatic ischemia/reperfusion (I/R) and other insults. METHODS: We analyzed the effects of hepatic I/R in mice given the selective MAGL inhibitor JZL184, in Mgll-/-mice, FAAH-/- mice, and in Cnr1(-/-)and Cnr2(-/-)mice, which have disruptions in the cannabinoid receptors 1 and 2 (CB(1/2)). Liver tissues were collected and analyzed, along with cultured hepatocytes and Kupffer cells. We measured endocannabinoids, eicosanoids, and markers of inflammation, oxidative stress, and cell death using molecular biology, biochemistry, and mass spectrometry analyses. RESULTS: Wild-type mice given JZL184 and Mgll-/- mice were protected from hepatic I/R injury by a mechanism that involved increased endocannabinoid signaling via CB(2) and reduced production of eicosanoids in the liver. JZL184 suppressed the inflammation and oxidative stress that mediate hepatic I/R injury. Hepatocytes were the major source of hepatic MAGL activity and endocannabinoid and eicosanoid production. JZL184 also protected from induction of liver injury by D-(+)-galactosamine and lipopolysaccharides or CCl(4). CONCLUSIONS: MAGL promotes hepatic injury via endocannabinoid and eicosanoid signaling; blockade of this pathway protects mice from liver injury. MAGL inhibitors might be developed to treat for conditions that expose the liver to oxidative stress and inflammatory damage.
    Gastroenterology 01/2013; 144. DOI:10.1053/j.gastro.2012.12.028 · 13.93 Impact Factor
  • Free Radical Biology and Medicine 11/2012; 53:S113. DOI:10.1016/j.freeradbiomed.2012.10.276 · 5.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endogenous glucocorticoids are essential for mobilizing energy resources, restraining inflammatory responses and coordinating behavior to an immune challenge. Impaired glucocorticoid receptor (GR) function has been associated with impaired metabolic processes, enhanced inflammation and exaggerated sickness and depressive-like behaviors. To discern the molecular mechanisms underlying GR regulation of physiologic and behavioral responses to a systemic immune challenge, GR(dim) mice, in which absent GR dimerization leads to impaired GR-DNA-binding-dependent mechanisms but intact GR protein-protein interactions, were administered low-dose lipopolysaccharide (LPS). GR(dim)-LPS mice exhibited elevated and prolonged levels of plasma corticosterone (CORT), interleukin (IL)-6 and IL-10 (but not plasma tumor necrosis factor-α (TNFα)), enhanced early expression of brain TNFα, IL-1β and IL-6 mRNA levels, and impaired later central TNFα mRNA expression. Exaggerated sickness behavior (lethargy, piloerection, ptosis) in the GR(dim)-LPS mice was associated with increased early brain proinflammatory cytokine expression and late plasma CORT levels, but decreased late brain TNFα expression. GR(dim)-LPS mice also exhibited sustained locomotor impairment in the open field, body weight loss and metabolic alterations measured by indirect calorimetry, as well as impaired thermoregulation. Taken together, these data indicate that GR dimerization-dependent DNA-binding mechanisms differentially regulate systemic and central cytokine expression in a cytokine- and time-specific manner, and are essential for the proper regulation and recovery of multiple physiologic responses to low-dose endotoxin. Moreover, these results support the concept that GR protein-protein interactions are not sufficient for glucocorticoids to exert their full anti-inflammatory effects and suggest that glucocorticoid responses limited to GR monomer-mediated transcriptional effects could predispose individuals to prolonged behavioral and metabolic sequelae of an enhanced inflammatory state.Molecular Psychiatry advance online publication, 23 October 2012; doi:10.1038/mp.2012.131.
    Molecular Psychiatry 10/2012; 18. DOI:10.1038/mp.2012.131 · 15.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial reactive oxygen species generation has been implicated in the pathophysiology of ischemia-reperfusion (I/R) injury; however, its exact role and its spatial-temporal relationship with inflammation are elusive. Herein we explore the spatial-temporal relationship of oxidative/nitrative stress and inflammatory response during the course of hepatic I/R and the possible therapeutic potential of mitochondrial-targeted antioxidants, using a mouse model of segmental hepatic ischemia-reperfusion injury. Hepatic I/R was characterized by early (at 2 h of reperfusion) mitochondrial injury, decreased complex I activity, increased oxidant generation in the liver or liver mitochondria, and profound hepatocellular injury/dysfunction with acute proinflammatory response (TNF-α, MIP-1α/CCL3, MIP-2/CXCL2) without inflammatory cell infiltration, followed by marked neutrophil infiltration and a more pronounced secondary wave of oxidative/nitrative stress in the liver (starting from 6 h of reperfusion and peaking at 24 h). Mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently attenuated I/R-induced liver dysfunction, the early and delayed oxidative and nitrative stress response (HNE/carbonyl adducts, malondialdehyde, 8-OHdG, and 3-nitrotyrosine formation), and mitochondrial and histopathological injury/dysfunction, as well as delayed inflammatory cell infiltration and cell death. Mitochondrially generated oxidants play a central role in triggering the deleterious cascade of events associated with hepatic I/R, which may be targeted by novel antioxidants for therapeutic advantage.
    Free Radical Biology and Medicine 06/2012; 53(5):1123-38. DOI:10.1016/j.freeradbiomed.2012.05.036 · 5.71 Impact Factor
  • Cancer Research 06/2012; 72(8 Supplement):1091-1091. DOI:10.1158/1538-7445.AM2012-1091 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cisplatin is a widely used antineoplastic agent. However, its major limitation is dose-dependent nephrotoxicity whose precise mechanism is poorly understood. Recent studies have suggested that mitochondrial dysfunction in tubular epithelium contributes to cisplatin-induced nephrotoxicity. Here the authors extend those findings by describing the role of an important electron transport chain enzyme, cytochrome c oxidase (COX). Immunohistochemistry for COX 1 protein demonstrated that, in response to cisplatin, expression was mostly maintained in focally damaged tubular epithelium. In contrast, COX enzyme activity in proximal tubules (by light microscopy) was decreased. Ultrastructural analysis of the cortex and outer stripe of the outer medulla showed decreased mitochondrial mass, disruption of cristae, and extensive mitochondrial swelling in proximal tubular epithelium. Functional electron microscopy showed that COX enzyme activity was decreased in the remaining mitochondria in the proximal tubules but maintained in distal tubules. In summary, cisplatin-induced nephrotoxicity is associated with structural and functional damage to the mitochondria. More broadly, using functional electron microscopy to measure mitochondrial enzyme activity may generate mechanistic insights across a spectrum of renal disorders.
    Journal of Histochemistry and Cytochemistry 04/2012; 60(7):521-9. DOI:10.1369/0022155412446227 · 2.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endocannabinoids and cannabinoid 1 (CB(1)) receptors have been implicated in cardiac dysfunction, inflammation, and cell death associated with various forms of shock, heart failure, and atherosclerosis, in addition to their recognized role in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes. In this study, we explored the role of CB(1) receptors in myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type 1 diabetic cardiomyopathy. Diabetic cardiomyopathy was characterized by increased myocardial endocannabinoid anandamide levels, oxidative/nitrative stress, activation of p38/Jun NH(2)-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs), enhanced inflammation (tumor necrosis factor-α, interleukin-1β, cyclooxygenase 2, intracellular adhesion molecule 1, and vascular cell adhesion molecule 1), increased expression of CB(1), advanced glycation end product (AGE) and angiotensin II type 1 receptors (receptor for advanced glycation end product [RAGE], angiotensin II receptor type 1 [AT(1)R]), p47(phox) NADPH oxidase subunit, β-myosin heavy chain isozyme switch, accumulation of AGE, fibrosis, and decreased expression of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a). Pharmacological inhibition or genetic deletion of CB(1) receptors attenuated the diabetes-induced cardiac dysfunction and the above-mentioned pathological alterations. Activation of CB(1) receptors by endocannabinoids may play an important role in the pathogenesis of diabetic cardiomyopathy by facilitating MAPK activation, AT(1)R expression/signaling, AGE accumulation, oxidative/nitrative stress, inflammation, and fibrosis. Conversely, CB(1) receptor inhibition may be beneficial in the treatment of diabetic cardiovascular complications.
    Diabetes 03/2012; 61(3):716-27. DOI:10.2337/db11-0477 · 8.47 Impact Factor

Publication Stats

3k Citations
434.25 Total Impact Points

Institutions

  • 2007–2015
    • National Institute on Alcohol Abuse and Alcoholism
      Роквилл, Maryland, United States
    • Clemson University
      CEU, South Carolina, United States
  • 2006–2014
    • National Institutes of Health
      • Laboratory of Physiologic Studies
      Maryland, United States
  • 2011
    • Northern Inyo Hospital
      BIH, California, United States
    • National Eye Institute
      Maryland, United States