Qi Li

University Health Network, Toronto, Ontario, Canada

Are you Qi Li?

Claim your profile

Publications (17)72.97 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evidence that synaptic vesicles (SVs) can be gated by a single voltage sensitive calcium channel (CaV2.2) predict a molecular linking mechanism or "tether" (Stanley, 1993). Recent studies have proposed that the SV binds to the distal C-terminal on the CaV2.2 calcium channel (Kaeser et al., 2011; Wong et al., 2013) while genetic analysis proposed a double tether mechanism via RIM: directly to the C terminus PDZ ligand domain or indirectly via a more proximal proline rich site (Kaeser et al., 2011). Using a novel in vitro SV pull down binding assay, we reported that SVs bind to a fusion protein comprising the C-terminal distal third (C3, aa 2137-2357; Wong et al., 2013). Here we limit the binding site further to the last 58 aa, beyond the proline rich site, by the absence of SV capture by a truncated C3 fusion protein (aa 2137-2299). To test PDZ-dependent binding we generated two C terminus-mutant C3 fusion proteins and a mimetic blocking peptide (H-WC, aa 2349-2357) and validated these by elimination of MINT-1 or RIM binding. Persistence of SV capture with all three fusion proteins or with the full length C3 protein but in the presence of blocking peptide, demonstrated that SVs can bind to the distal C-terminal via a PDZ-independent mechanism. These results were supported in situ by normal SV turnover in H-WC-loaded synaptosomes, as assayed by a novel peptide cryoloading method. Thus, SVs tether to the CaV2.2 C-terminal within a 49 aa region immediately prior to the terminus PDZ ligand domain. Long tethers that could reflect extended C termini were imaged by electron microscopy of synaptosome ghosts. To fully account for SV tethering we propose a model where SVs are initially captured, or "grabbed," from the cytoplasm by a binding site on the distal region of the channel C-terminal and are then retracted to be "locked" close to the channel by a second attachment mechanism in preparation for single channel domain gating.
    Frontiers in Cellular Neuroscience 03/2014; 8:71. DOI:10.3389/fncel.2014.00071 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fusion of synaptic vesicles (SVs) at the presynaptic transmitter release face is gated by Ca(2) (+) influx from nearby voltage-gated calcium channels (CaVs). Functional studies favor a direct molecular "tethering" attachment and recent studies have proposed a direct link to the channel C-terminal. To test for direct CaV-SV attachment we developed an in vitro assay, termed SV pull-down (SV-PD), to test for capture of purified, intact SVs. Antibody-immobilized presynaptic or expressed CaV2.2 channels but not plain beads, IgG or pre-blocked antibody successfully captured SVs, as assessed byWestern blot for a variety of protein markers. SV-PD was also observed with terminal fusion proteins of the distal half of the C-terminal, supporting involvement of this CaV region in tethering. Thus our results support a model in which the SV tethers directly to the CaV. Since the tip of the C-terminal could extend as far as 200 nm into the cytoplasm, we hypothesize that this link may serve as the initial SV capture mechanism by the release site. Further studies will be necessary to evaluate the molecular basis of C-terminal tethering and whether the SV binds to the channel by additional, shorter-range attachments.
    Frontiers in Cellular Neuroscience 06/2013; 7:101. DOI:10.3389/fncel.2013.00101 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Calcium entry through CaV2.2 calcium channels clustered at the active zone (AZ) of the presynaptic nerve terminal gates synaptic vesicle (SV) fusion and the discharge of neurotransmitters, but the mechanism of channel scaffolding remains poorly understood. Recent studies have implicated the binding of a PDZ ligand domain (PDZ-LD) at the tip of the channel C terminal to a partner PDZ domain on RIM1/2, a synaptic vesicle-associated protein. To explore CaV2.2 scaffolding, we created intracellular region fusion proteins and used these to test for binding by 'fishing' for native CaV2.2 channels from cell lysates. Fusion proteins mimicking the distal half of the channel C terminal (C3strep) reliably captured CaV2.2 from whole brain crude membrane or purified synaptosome membrane lysates, whereas channel I-II loop or the distal half of the II-III loop proteins were negative. This capture could be replicated in a non-synaptic environment using CaV2.2 expressed in a cell line. The distal tip PDZ-LD, DDWC-COOH, was confirmed as the critical binding site by block of pull-down with mimetic peptides. Pull-down experiments using brain crude membrane lysates confirmed that RIM1/2 can bind to the DDWC PDZ-LD. However, robust CaV2.2 capture was observed from synaptosome membrane or in the cell line expression system with little or no RIM1/2 co-capture. Thus, we conclude that CaV2.2 channels can scaffold to each other via an interaction that involves the PDZ-LD by an inter-channel linkage bridged by an unknown protein.
    05/2013; 2(5):492-498. DOI:10.1242/bio.20134267
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dorsal root ganglion (DRG) contains a subset of closely-apposed neuronal somata (NS) separated solely by a thin satellite glial cell (SGC) membrane septum to form an NS-glial cell-NS trimer. We recently reported that stimulation of one NS with an impulse train triggers a delayed, noisy and long-lasting response in its NS pair via a transglial signaling pathway that we term a 'sandwich synapse' (SS). Transmission could be unidirectional or bidirectional and facilitated in response to a second stimulus train. We have shown that in chick or rat SS the NS-to-SGC leg of the two-synapse pathway is purinergic via P2Y2 receptors but the second SGC-to-NS synapse mechanism remained unknown. A noisy evoked current in the target neuron, a reversal potential close to 0 mV, and insensitivity to calcium scavengers or G protein block favored an ionotropic postsynaptic receptor. Selective block by D-2-amino-5-phosphonopentanoate (AP5) implicated glutamatergic transmission via N-methyl-d-aspartate receptors. This agent also blocked NS responses evoked by puff of UTP, a P2Y2 agonist, directly onto the SGC cell, confirming its action at the second synapse of the SS transmission pathway. The N-methyl-d-aspartate receptor NR2B subunit was implicated by block of transmission with ifenprodil and by its immunocytochemical localization to the NS membrane, abutting the glial septum P2Y2 receptor. Isolated DRG cell clusters exhibited daisy-chain and branching NS-glial cell-NS contacts, suggestive of a network organization within the ganglion. The identification of the glial-to-neuron transmitter and receptor combination provides further support for transglial transmission and completes the DRG SS molecular transmission pathway.
    European Journal of Neuroscience 01/2013; 37(8). DOI:10.1111/ejn.12132 · 3.67 Impact Factor
  • Biophysical Journal 01/2013; 104(2):461-. DOI:10.1016/j.bpj.2012.11.2550 · 3.83 Impact Factor
  • Biophysical Journal 01/2013; 104(2):497-. DOI:10.1016/j.bpj.2012.11.2743 · 3.83 Impact Factor
  • Biophysical Journal 01/2013; 104(2):498-. DOI:10.1016/j.bpj.2012.11.2747 · 3.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most dorsal root ganglion neuronal somata (NS) are isolated from their neighbours by a satellite glial cell (SGC) sheath. However, some NS are associated in pairs, separated solely by the membrane septum of a common SGC to form a neuron-glial cell-neuron (NGlN) trimer. We reported that stimulation of one NS evokes a delayed, noisy and long-duration inward current in both itself and its passive partner that was blocked by suramin, a general purinergic antagonist. Here we test the hypothesis that NGlN transmission involves purinergic activation of the SGC. Stimulation of the NS triggered a sustained current noise in the SGC. Block of transmission through the NGlN by reactive blue 2 or thapsigargin, a Ca(2+) store-depletion agent, implicated a Ca(2+) store discharge-linked P2Y receptor. P2Y2 was identified by simulation of the NGlN-like transmission by puffing UTP onto the SGC and by immunocytochemical localization to the SGC membrane septum. Block of the UTP effect by BAPTA, an intracellular Ca(2+) scavenger, supported the involvement of SGC Ca(2+) stores in the signaling pathway. We infer that transmission through the NGlN trimer involves secretion of ATP from the NS and triggering of SGC Ca(2+) store discharge via P2Y2 receptors. Presumably, cytoplasmic Ca(2+) elevation leads to the release of an as-yet unidentified second transmitter from the glial cell to complete transmission. Thus, the two NS of the NGlN trimer communicate via a 'sandwich synapse' transglial pathway, a novel signaling mechanism that may contribute to information transfer in other regions of the nervous system.
    European Journal of Neuroscience 12/2012; 37(3). DOI:10.1111/ejn.12082 · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Somatic sensory neuron somata are located within the dorsal root ganglia (DRG) and are mostly ensheathed by individual satellite glial cell sheets. It has been noted, however, that a subpopulation of these DRG somata are intimately associated, separated only by a single thin satellite glial cell membrane septum. We set out to test whether such neuron-glial cell-neuron trimers (NGlNs) are also linked functionally. The presence of NGlNs in chick DRGs was confirmed by electron microscopy. Selective satellite glial cell immunostains were identified and were used to image the inter-neuron septa in DRG frozen sections. We used a gentle, dispase-based enzymatic method to isolate chick and rat NGlNs in vitro for double patch clamp recordings. In the majority of pairs tested, an action potential-like stimulus train delivered to one soma resulted in a delayed, noisy and long-duration response in its idle partner. The response to a second stimulus train given minutes later was markedly facilitated. Both bidirectional and unidirectional transmission was observed between the paired neurons. Transmission was chemical and block by the general purinergic blocker suramin implicated ATP as a neurotransmitter. We conclude that the two neuronal somata in the NGlN can communicate by chemical transmission, which may involve a transglial, bi-synaptic pathway. This novel soma-to-soma transmission reflects a novel form of processing that may play a role in sensory disorders in the DRG and interneuron communication in the central nervous system.
    European Journal of Neuroscience 07/2012; DOI:10.1111/j.1460-9568.2012.08233.x · 3.67 Impact Factor
  • Nature Neuroscience 09/2009; 12(8):957-8; author reply 958. DOI:10.1038/nn0809-957a · 14.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic vesicles (SVs) are triggered to fuse with the surface membrane at the presynaptic transmitter release site (TRSs) core by Ca2+ influx through nearby attached CaV2.2 channels [see accompanying paper: Khanna et al. (2007)Eur. J. Neurosci., 26, 547-559] and are then recovered by endocytosis. In this study we test the hypothesis that the TRS core is linked to an endocytosis-related protein complex. This was tested by immunostaining analysis of the chick ciliary ganglion calyx presynaptic terminal and biochemical analysis of synaptosome lysate, using CaV2.2 as a marker for the TRS. We noted that CaV2.2 clusters abut heavy-chain (H)-clathrin patches at the transmitter release face. Quantitative coimmunostaining analysis (ICA/ICQ method) demonstrated a strong covariance of release-face CaV2.2 staining with that for the AP180 and intersectin endocytosis adaptor proteins, and a moderate covariance with H- or light-chain (L)-clathrin and dynamin coat proteins, consistent with a multimolecular complex. This was supported by coprecipitation of these proteins with CaV2.2 from brain synaptosome lysate. Interestingly, the channel neither colocalized nor coprecipitated with the endocytosis cargo-capturing adaptor AP2, even though this protein both colocalized and coprecipitated with H-clathrin. Fractional recovery analysis of the immunoprecipitated CaV2.2 complex by exposure to high NaCl (approximately 1 m) indicated that AP180 and S-intersectin adaptors are tightly bound to CaV2.2 while L-intersectin, H- and L-clathrin and dynamin form a less tightly linked subcomplex. Our results are consistent with two distinct clathrin endocytosis complexes: an AP2-containing, remote, non-TRS complex and a specialised, AP2-lacking, TRS-associated subcomplex linked via a molecular bridge. The most probable role of this subcomplex is to facilitate SV recovery after transmitter release.
    European Journal of Neuroscience 09/2007; 26(3):560-74. DOI:10.1111/j.1460-9568.2007.05681.x · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CaV2.2 channels play a key role in the gating of transmitter release sites (TRS) at presynaptic terminals. Physiological studies predict that the channels are linked directly to the TRS but the molecular composition of this complex remains poorly understood. We have used a high-affinity anti-CaV2.2 antibody, Ab571, to test a range of proteins known to contribute to TRS function for both an association in situ and a link in vitro. CaV2.2 clusters were isolated intact on immunoprecipitation beads and coprecipitated with a number of these proteins. Quantitative staining covariance analysis (ICA/ICQ method) was applied to the transmitter release face of the giant calyx terminal in the chick ciliary ganglion to test for TRS proteins with staining intensities that covary in situ with CaV2.2, resulting in a covariance sequence of NSF>RIM>spectrin>Munc18>VAMP>alpha-catenin, CASK>SV2>Na+-K+ approximately 0. A high-NaCl dissociation challenge applied to the immunoprecipitated complex, using the fractional recovery (FR) method [Khanna, R., Li, Q. & Stanley, E.F. (2006) PLoS.ONE., 1, e67], was used to test which proteins were most intimately associated with the channel, generating an FR sequence for CaV2.2 of: VAMP>or=actin>tubulin, NSF, Munc18, syntaxin 1>spectrin>CASK, SNAP25>RIM, Na+-K+ pump, v-ATPase, beta-catenin approximately 0. Proteins associated with endocytosis are considered in a companion paper [Khanna et al. (2007)Eur. J. Neurosci., 26, 560-574]. With the exception of VAMP and RIM, the ICQ and FR sequences were consistent, suggesting that proteins that covary the most strongly with CaV2.2 in situ are also the most intimately attached. Our findings suggest that the CaV2.2 cluster is an integral element of a multimolecular vesicle-fusion module that forms the core of a multifunctional TRS.
    European Journal of Neuroscience 08/2007; 26(3):547-59. DOI:10.1111/j.1460-9568.2007.05680.x · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Munc18 is a presynaptic protein that is essential for transmitter release. Recent studies have indicated that this protein is involved in secretory vesicle docking but its binding partners in this role remain a mystery. We demonstrate using the isolated calyx-type presynaptic terminal of the chick ciliary ganglion that staining for Munc18 colocalizes and covaries with that for transmitter release site N type calcium channels (CaV2.2), consistent with elements of a common release site complex. Biochemical analysis demonstrated that the protein coprecipitates with CaV2.2 from lysates of rat or chick brain, including its synaptic, long-splice variant; presynaptic terminal surface membrane proteins, and a cell line coexpressing Munc18 and CaV2.2. Munc18 bound with high affinity to the CaV2.2 II-III intracellular loop, low affinity to the I-II loop but not to other channel intracellular regions. Over-expression of Munc18 in dorsal root ganglion neurons did not affect CaV2.2 current amplitude or fast kinetics but siRNA-knockdown resulted in a negative shift in the steady state inactivation curve, an effect attributed to an indirect action via syntaxin 1. Recombinant Munc18 also coprecipitated strongly with the v-SNARE synaptotagmin, but only weakly with other SNAREs. Thus, the calcium channel may serve as a surface membrane platform anchoring a Munc18-containing bridge to synaptotagmin and the synaptic vesicle.
    Channels (Austin, Tex.) 01/2007; 1(1):11-20. DOI:10.4161/chan.3694 · 2.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ca(2+) influx through N-type Ca(2+) channels (CaV2.2) is known to be critical for transmitter release at many synapses. These channels are known to be localized to transmitter release sites, but their anchoring mechanism remains unknown. Recent studies have demonstrated that presynaptic organization is subject to interactions with the postsynaptic cell or the intervening extracellular matrix. We used a previously described high-affinity antibody against the N-type Ca(2+) channels, Ab571, to localize Ca(2+) channel clusters at the release face of an isolated giant calyx-type synapse to test whether the maintenance of these clusters requires an intact extracellular matrix or contact with the postsynaptic cell. Because the number of Ca(2+) channel clusters was unchanged after extracellular matrix dispersal or nerve terminal isolation, we conclude that presynaptic transmitter release face Ca(2+) clusters can be maintained independently of extracellular influences. Our results suggest that a presynaptic molecular scaffold is responsible for the maintenance of release site Ca(2+) channel clusters.
    European Journal of Neuroscience 04/2006; 23(5):1391-6. DOI:10.1111/j.1460-9568.2006.04653.x · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The integral synaptic vesicle protein and putative calcium sensor, synaptotagmin 1 (STG), has also been implicated in synaptic vesicle (SV) recovery. However, proteins with which STG interacts during SV endocytosis remain poorly understood. We have isolated an STG-associated endocytic complex (SAE) from presynaptic nerve terminals and have used a novel fractional recovery (FR) assay based on electrostatic dissociation to identify SAE components and map the complex structure. The location of SAE in the presynaptic terminal was determined by high-resolution quantitative immunocytochemistry at the chick ciliary ganglion giant calyx-type synapse. The first step in FR analysis was to immunoprecipitate (IP) the complex with an antibody against one protein component (the IP-protein). The immobilized complex was then exposed to a high salt (1150 mM) stress-test that caused shedding of co-immunoprecipitated proteins (co-IP-proteins). A Fractional Recovery ratio (FR: recovery after high salt/recovery with control salt as assayed by Western blot) was calculated for each co-IP-protein. These FR values reflect complex structure since an easily dissociated protein, with a low FR value, cannot be intermediary between the IP-protein and a salt-resistant protein. The structure of the complex was mapped and a blueprint generated with a pair of FR analyses generated using two different IP-proteins. The blueprint of SAE contains an AP180/X/STG/stonin 2/intersectin/epsin core (X is unknown and epsin is hypothesized), and an AP2 adaptor, H-/L-clathrin coat and dynamin scission protein perimeter. Quantitative immunocytochemistry (ICA/ICQ method) at an isolated calyx-type presynaptic terminal indicates that this complex is associated with STG at the presynaptic transmitter release face but not with STG on intracellular synaptic vesicles. We hypothesize that the SAE serves as a recognition site and also as a seed complex for clathrin-mediated synaptic vesicle recovery. The combination of FR analysis with quantitative immunocytochemistry provides a novel and effective strategy for the identification and characterization of biologically-relevant multi-molecular complexes.
    PLoS ONE 02/2006; 1(1):e67. DOI:10.1371/journal.pone.0000067 · 3.53 Impact Factor
  • PLoS ONE 01/2006; 1(1). DOI:10.1371/journal.pone.0000067.t001 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Presynaptic Ca(V)2.2 (N-type) calcium channels are subject to modulation by interaction with syntaxin 1 and by a syntaxin 1-sensitive Galpha(O) G-protein pathway. We used biochemical analysis of neuronal tissue lysates and a new quantitative test of colocalization by intensity correlation analysis at the giant calyx-type presynaptic terminal of the chick ciliary ganglion to explore the association of Ca(V)2.2 with syntaxin 1 and Galpha(O). Ca(V)2.2 could be localized by immunocytochemistry (antibody Ab571) in puncta on the release site aspect of the presynaptic terminal and close to synaptic vesicle clouds. Syntaxin 1 coimmunoprecipitated with Ca(V)2.2 from chick brain and chick ciliary ganglia and was widely distributed on the presynaptic terminal membrane. A fraction of the total syntaxin 1 colocalized with the Ca(V)2.2 puncta, whereas the bulk colocalized with MUNC18-1. Galpha(O,) whether in its trimeric or monomeric state, did not coimmunoprecipitate with Ca(V)2.2, MUNC18-1, or syntaxin 1. However, the G-protein exhibited a punctate staining on the calyx membrane with an intensity that varied in synchrony with that for both Ca channels and syntaxin 1 but only weakly with MUNC18-1. Thus, syntaxin 1 appears to be a component of two separate complexes at the presynaptic terminal, a minor one at the transmitter release site with Ca(V)2.2 and Galpha(O), as well as in large clusters remote from the release site with MUNC18-1. These syntaxin 1 protein complexes may play distinct roles in presynaptic biology.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 05/2004; 24(16):4070-81. DOI:10.1523/JNEUROSCI.0346-04.2004 · 6.75 Impact Factor

Publication Stats

476 Citations
72.97 Total Impact Points


  • 2004–2007
    • University Health Network
      • Division of Cell and Molecular Biology
      Toronto, Ontario, Canada
  • 2006
    • Molecular and Cellular Biology Program
      • Department of Molecular and Cellular Biology
      Seattle, Washington, United States