Olaf Gefeller

Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Bavaria, Germany

Are you Olaf Gefeller?

Claim your profile

Publications (4)46.67 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Erythropoietin (EPO) improves cognitive performance in clinical studies and rodent experiments. We hypothesized that an intrinsic role of EPO for cognition exists, with particular relevance in situations of cognitive decline, which is reflected by associations of EPO and EPO receptor (EPOR) genotypes with cognitive functions. To prove this hypothesis, schizophrenic patients (N > 1000) were genotyped for 5' upstream-located gene variants, EPO SNP rs1617640 (T/G) and EPORSTR(GA)(n). Associations of these variants were obtained for cognitive processing speed, fine motor skills and short-term memory readouts, with one particular combination of genotypes superior to all others (p < 0.0001). In an independent healthy control sample (N > 800), these associations were confirmed. A matching preclinical study with mice demonstrated cognitive processing speed and memory enhanced upon transgenic expression of constitutively active EPOR in pyramidal neurons of cortex and hippocampus. We thus predicted that the human genotypes associated with better cognition would reflect gain-of-function effects. Indeed, reporter gene assays and quantitative transcriptional analysis of peripheral blood mononuclear cells showed genotype-dependent EPO/EPOR expression differences. Together, these findings reveal a role of endogenous EPO/EPOR for cognition, at least in schizophrenic patients.
    Molecular Medicine 06/2012; 18(9):1029-40. · 4.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stress plays a major role in the development of comorbid alcohol use disorder (AUD). In turn, AUD worsens the outcome of psychiatric patients with respect to global disease severity, social situation, and socioeconomic burden. Prediction of persons at risk for AUD is crucial for future preventive and therapeutic strategies. To investigate whether genetic variants of the corticotropin-releasing factor system or their interaction influence the risk of developing AUD in chronic disease populations. Genotype analysis comprising selected single-nucleotide polymorphisms within the CRHR1 and CRHBP genes in patients with schizophrenia and in a nonschizophrenic psychiatric disease control sample should allow the extraction of predictors of comorbid AUD. Gene expression (messenger RNA) analysis in peripheral blood mononuclear cells was performed to gain the first mechanistic insight. An ideal setup for this study was the Göttingen Research Association for Schizophrenia Data Collection of schizophrenic patients, specifically intended to enable association of genetic information with quantifiable phenotypes in a phenotype-based genetic association study. Patients A total of 1037 schizophrenic patients (Göttingen Research Association for Schizophrenia sample), 80 nonschizophrenic psychiatric disease controls as a small replicate sample, and a case-control study including 1141 healthy subjects. Association of CRHR1 and CRHBP genotypes with the following: (1) AUD; (2) a newly developed alcoholism severity score comprising 5 AUD-relevant variables; and (3) quantitative CRHR1 and CRHBP messenger RNA expression. An interaction of CRHR1 rs110402 and CRHBP rs3811939 predicts high risk of comorbid AUD in schizophrenic patients (odds ratio = 2.27; 95% confidence interval, 1.56-3.30; P < .001) as well as psychiatric disease controls (odds ratio = 4.02; 95% confidence interval, 0.95-17.05; P = .06) and leads to the highest CRHR1/CRHBP messenger RNA ratio (P = .02; dysbalanced stress axis). The high predictive value of a genetic interaction within the stress axis for the risk of comorbid AUD may be used for novel preventive and individualized therapeutic approaches.
    Archives of general psychiatry 08/2011; 68(12):1247-56. · 12.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurodevelopmental abnormalities together with neurodegenerative processes contribute to schizophrenia, an etiologically heterogeneous, complex disease phenotype that has been difficult to model in animals. The neurodegenerative component of schizophrenia is best documented by magnetic resonance imaging (MRI), demonstrating progressive cortical gray matter loss over time. No treatment exists to counteract this slowly proceeding atrophy. The hematopoietic growth factor erythropoietin (EPO) is neuroprotective in animals. Here, we show by voxel-based morphometry in 32 human subjects in a placebo-controlled study that weekly high-dose EPO for as little as 3 months halts the progressive atrophy in brain areas typically affected in schizophrenia, including hippocampus, amygdala, nucleus accumbens, and several neocortical areas. Specifically, gray matter protection is highly associated with improvement in attention and memory functions. These findings suggest that a neuroprotective strategy is effective against common pathophysiological features of schizophrenic patients, and strongly encourage follow-up studies to optimize EPO treatment dose and duration.
    Molecular psychiatry 01/2011; 16(1):26-36, 1. · 15.05 Impact Factor
  • Molecular Psychiatry 01/2011; · 14.90 Impact Factor