P Avenet

Sanofi Aventis Group, Paris, Ile-de-France, France

Are you P Avenet?

Claim your profile

Publications (45)138.6 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background / Purpose: Endocannabinoids (eCBs) play a key neuromodulatory role in the central nervous system, regulating appetite, cognition, emotion, mood and pain by activation of cannabinoid (CB1) receptors. Here we report the pharmacological profile of a potent and selective serine hydrolase monoacylglycerol lipase (MAGL) inhibitor, SAR127303. Main conclusion: Selective pharmacological or genetic blockade of 2-AG hydrolysis affects memory performance and epileptogenesis process.
    52nd Annual Meeting of the American College of Neuropsychopharmacology (ACNP) 2013; 01/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Disruption of circadian clock enhances the risk of metabolic syndrome, obesity, and type 2 diabetes. Circadian clocks rely on a highly regulated network of transcriptional and translational loops that drive clock-controlled gene expression. Among these transcribed clock genes are cryptochrome (CRY) family members, which comprise Cry1 and Cry2. While the metabolic effects of deletion of several core components of the clock gene machinery have been well characterized, those of selective inactivation of Cry1 or Cry2 genes have not been described. In this study, we demonstrate that ablation of Cry1, but not Cry2, prevents high-fat diet (HFD)-induced obesity in mice. Despite similar caloric intake, Cry1 (-/-) mice on HFD gained markedly less weight (-18%) at the end of the 16-week experiment and displayed reduced fat accumulation compared to wild-type (WT) littermates (-61%), suggesting increased energy expenditure. Analysis of serum lipid and glucose profiles showed no difference between Cry1 (-/-) and WT mice. Both Cry1 (-/-) and Cry2 (-/-) mice are indistinguishable from WT controls in body weight, fat and protein contents, and food consumption when they are allowed unlimited access to a standard rodent diet. We conclude that although CRY signaling may not be essential for the maintenance of energy homeostasis under steady-state nutritional conditions, Cry1 may play a role in readjusting energy balance under changing nutritional circumstances. These studies reinforce the important role of circadian clock genes in energy homeostasis and suggest that Cry1 is a plausible target for anti-obesity therapy.
    Frontiers in Endocrinology 01/2014; 5:49.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background / Purpose: Several GSK-3-beta inhibitors have been described, but they do not appear to be selective against other closely related kinases. SAR502250 (UDA-680) has been described recently as a potent, selective and competitive inhibitor of mouse and human GSK-3-beta (IC50=12 nM in both species), with excellent brain permeability in the mouse (brain/plasma ratio is 2.7 after 2 hours). The drug was shown to decrease tau phosphorylation in mice.Here, we report on the pharmacological effects of SAR502250 in animal models of Alzheimer’s disease (AD) (including assays of cell death, tau hyperphosphorylation and cognitive deficit), schizophrenia and stress-related disorders (using anxiety and depression tests). Main conclusion: The findings suggest that GSK-3-beta inhibitors have a wide spectrum of therapeutic potential, which is particularly interesting for AD and schizophrenia in the context of comorbidity with depression.
    Neuroscience 2013; 12/2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of the present study was to examine the idea that the decrease in 50-kHz ultrasonic vocalizations elicited by tickling in juvenile rats following the administration of the psychotomimetic drug phencyclidine (PCP) may represent a valid model of the negative symptoms of schizophrenia. Fifty-kilohertz calls in rodents have been suggested to represent an archaic model of human laughter. Our results showed that daily tickling sessions produced a gradual increase in 50-kHz vocalizations, an effect that reached statistical significance from day 3. Administration of PCP (1 mg/kg, intraperitoneally) attenuated the 50-kHz calls induced by 4 consecutive days of tickling. The ability of several clinically effective or potential antipsychotics to reverse the effects of PCP was investigated. The 5-HT1A receptor partial agonist, buspirone (0.3 and 1 mg/kg, intraperitoneally), the dual D2/5-HT1A receptor ligand, SSR181507 (0.5-0.75 mg/kg, intraperitoneally), but not the atypical antipsychotic, aripiprazole (0.1-1 mg/kg, intraperitoneally), the 5-HT2A receptor antagonist, eplivanserin (0.3-3 mg/kg, intraperitoneally), and the GlyT1 inhibitor, SSR103800 (0.3-3 mg/kg, intraperitoneally) significantly attenuated the effects of PCP on 50-kHz calls. Importantly, in animals not treated with PCP, none of the drugs affected 50-kHz calls elicited by a first handling-tickling session, indicating that the action of buspirone and SSR181507 cannot be explained by an intrinsic effect. To investigate further the specificity of these drug effects, we tested the anxiolytic and antidepressant agents, diazepam (0.1-1 mg/kg, intraperitoneally) and fluoxetine (1-10 mg/kg, intraperitoneally), respectively, in this procedure. Neither drug affected tickling-induced 50-kHz calls in naive or PCP-treated rats. In conclusion, the results of the present study confirm that 50-kHz calls elicited by several tickling sessions in rats can be reduced by acute administration of PCP, and that this effect can be reversed by previous administration of compounds with 5-HT1A receptor agonist properties. As evidence for clinical efficacy of both agents on the negative symptoms of schizophrenia is weak or lacking, the current findings do not allow a definite conclusion to be drawn on the validity of this procedure as a model of this aspect of schizophrenia.
    Behavioural pharmacology 08/2013; · 2.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 5-Hydroxytryptamine (5-HT)(2A) antagonists are promising therapeutic agents for the treatment of sleep maintenance insomnias, but unlike hypnotics, they have limited effects on sleep initiation. This study evaluated the effects of several 5-HT(2A) antagonists (eplivanserin, volinanserin and AVE8488) alone and/or in combination with the short-acting hypnotic, zolpidem, on the rat sleep profile. A repeated-measures design was used in which rats were treated with eplivanserin (3 and 10 mg/kg, i.p. or p.o.), volinanserin (0.3-3 mg/kg, i.p.), AVE8488 (0.1-3 mg/kg, i.p.) and zolpidem (3 and 10 mg/kg, p.o.). In addition, animals received a combination of eplivanserin (3 mg/kg, p.o.) and zolpidem (3 mg/kg, p.o.). Electroencephalogram, was analyzed for 6 h after administration. Eplivanserin did not modify wakefulness and non-rapid eye movement sleep (NREMS), while zolpidem (10 mg/kg po) induced a marked increase in NREMS duration. Volinanserin (1 and 3 mg/kg) and AVE8488 (0.3 mg/kg) similarly increased NREMS, while reducing wakefulness. Moreover, the 5-HT(2A) antagonists and, to a lesser extent, zolpidem, increased duration of NREMS episodes, while decreasing their frequency. When eplivanserin was co-administered with zolpidem, a synergistic effect was observed as the combination produced an increase in NREMS time and bouts duration. These findings confirm further that 5-HT(2A) antagonists promote the maintenance of sleep, and suggest that combining a 5-HT(2A) antagonist with a short-acting hypnotic may be a useful strategy for the treatment of insomnia.
    Neuropharmacology 01/2013; · 4.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sodium-activated potassium (K(Na)) channels have been suggested to set the resting potential, to modulate slow after-hyperpolarizations, and to control bursting behavior or spike frequency adaptation (Trends Neurosci 28:422-428, 2005). One of the genes that encodes K(Na) channels is called Slack (Kcnt1, Slo2.2). Studies found that Slack channels were highly expressed in nociceptive dorsal root ganglion neurons and modulated their firing frequency (J Neurosci 30:14165-14172, 2010). Therefore, Slack channel openers are of significant interest as putative analgesic drugs. We screened the library of pharmacologically active compounds with recombinant human Slack channels expressed in Chinese hamster ovary cells, by using rubidium efflux measurements with atomic absorption spectrometry. Riluzole at 500 μM was used as a reference agonist. The antipsychotic drug loxapine and the anthelmintic drug niclosamide were both found to activate Slack channels, which was confirmed by using manual patch-clamp analyses (EC(50) = 4.4 μM and EC(50) = 2.9 μM, respectively). Psychotropic drugs structurally related to loxapine were also evaluated in patch-clamp experiments, but none was found to be as active as loxapine. Loxapine properties were confirmed at the single-channel level with recombinant rat Slack channels. In dorsal root ganglion neurons, loxapine was found to behave as an opener of native K(Na) channels and to increase the rheobase of action potential. This study identifies new K(Na) channel pharmacological tools, which will be useful for further Slack channel investigations.
    Journal of Pharmacology and Experimental Therapeutics 12/2011; 340(3):706-15. · 3.89 Impact Factor
  • European Neuropsychopharmacology - EUR NEUROPSYCHOPHARMACOL. 01/2011; 21.
  • European Neuropsychopharmacology - EUR NEUROPSYCHOPHARMACOL. 01/2011; 21.
  • European Neuropsychopharmacology - EUR NEUROPSYCHOPHARMACOL. 01/2010; 20.
  • European Neuropsychopharmacology - EUR NEUROPSYCHOPHARMACOL. 01/2010; 20.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia has been initially associated with dysfunction in dopamine neurotransmission. However, the observation that antagonists of the glutamate N-methyl-D-aspartate (NMDA) receptor produce schizophrenic-like symptoms in humans has led to the idea of a dysfunctioning of the glutamatergic system via its NMDA receptor. As a result, there is a growing interest in the development of pharmacological agents with potential antipsychotic properties that enhance the activity of the glutamatergic system via a modulation of the NMDA receptor. Among them are glycine transporter-1 (GlyT1) inhibitors such as SSR103800, which indirectly enhance NMDA receptor function by increasing the glycine (a co-agonist for the NMDA receptor) levels in the synapse. This study aimed at investigating the potential antipsychotic-like properties of SSR103800, with a particular focus on models of hyperactivity, involving either drug challenge (ie, amphetamine and MK-801) or transgenic mice (ie, NMDA Nr1(neo-/-) and DAT(-/-)). Results showed that SSR103800 (10-30 mg/kg p.o.) blocked hyperactivity induced by the non-competitive NMDA receptor antagonist, MK-801 and partially reversed spontaneous hyperactivity of NMDA Nr1(neo-/-) mice. In contrast, SSR103800 failed to affect hyperactivity induced by amphetamine or naturally observed in dopamine transporter (DAT(-/-)) knockout mice (10-30 mg/kg p.o.). Importantly, both classical (haloperidol) and atypical (olanzapine, clozapine and aripiprazole) antipsychotics were effective in all these models of hyperactivity. However, unlike these latter, SSR103800 did not produce catalepsy (retention on the bar test) up to 30 mg/kg p.o. Together these findings show that the GlyT1 inhibitor, SSR103800, produces antipsychotic-like effects, which differ from those observed with compounds primarily targeting the dopaminergic system, and has a reduced side-effect potential as compared with these latter drugs.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 09/2009; 35(2):416-27. · 8.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: SR58611A is a selective beta(3)-adrenoceptor (Adrb3) agonist which has demonstrated antidepressant and anxiolytic properties in rodents. The present study confirmed the detection of Adrb3 mRNA transcript in rodent brain sub-regions and evaluated the effect of SR58611A on serotonergic and noradrenergic transmission in rats and mice in an attempt to elucidate the mechanism(s) underlying these properties. SR58611A (3 and 10 mg/kg, p.o.) increased the synthesis of 5-HT and tryptophan (Trp) levels in several rodent brain areas (cortex, hippocampus, hypothalamus, striatum). Moreover, SR58611A (10 mg/kg, p.o.) increased the release of 5-HT assessed by in vivo microdialysis in rat prefrontal cortex. Systemic (3 mg/kg, i.v.) or chronic administration of SR58611A (10 mg/kg, p.o.), in contrast to fluoxetine (15 mg/kg, p.o.), did not modify the activity of serotonergic neurons in the rat dorsal raphe nucleus. The increase in 5-HT synthesis induced by SR58611A was not observed in Adrb3s knockout mice, suggesting a selective involvement of Adrb3s in this effect. SR58611A (3 and 10 mg/kg, p.o.) did not modify norepinephrine synthesis and metabolism but increased its release in rat brain. Repeated administration of SR58611A (10 mg/kg, p.o.) did not modify basal norepinephrine release in rat prefrontal cortex whereas it prevented its tail-pinch stress-induced enhancement similarly to reboxetine (15 mg/kg, p.o.). Finally SR58611A increased the firing rate of noradrenergic neurons in the rat locus coeruleus following systemic (3 mg/kg, i.v.) or local (0.01 and 1 microM) but not chronic (10 mg/kg, p.o.) administration. These results suggest that the anxiolytic- and antidepressant-like activities of SR58611A involve an increase of brain serotonergic and noradrenergic neurotransmissions, triggered by activation of Adrb3s.
    Neuroscience 08/2008; 156(2):353-64. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: On native human, rat and mouse glycine transporter-1(GlyT1), SSR130800 behaves as a selective inhibitor with IC50 values of 1.9, 5.3 and 6.8 nM, respectively. It reversibly blocked glycine uptake in mouse brain cortical homogenates, increased extracellular levels of glycine in the rat prefrontal cortex, and potentiated NMDA-mediated excitatory postsynaptic currents in rat hippocampal slices. SSR103800 (30 mg/kg, p.o.) decreased MK-801- and PCP-induced locomotor hyperactivity in rodents. SSR103800 (1 and 10 mg/kg, p.o.) attenuated social recognition deficit in adult rats induced by neonatal injections of PCP (10 mg/kg, s.c., on post-natal day 7, 9 and 11). SSR103800 (3 mg/kg, p.o.) counteracted the deficit in short-term visual episodic-like memory induced by a low challenge dose of PCP (1 mg/kg, i.p.), in PCP-sensitized rats (10 mg/kg, i.p.). SSR103800 (30 mg/kg, i.p.) increased the prepulse inhibition of the startle reflex in DBA/1J mice. SSR103800 decreased defensive- and despair-related behaviors in the tonic immobility test in gerbils (10 and 30 mg/kg, p.o.) and in the forced-swimming procedure in rats (1 and 3 mg/kg, p.o.), respectively. These findings suggest that SSR103800 may have a therapeutic potential in the management of the core symptoms of schizophrenia and comorbid depression states.
    Pharmacology Biochemistry and Behavior 07/2008; 91(1):47-58. · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The characterization of the first selective orally active and brain-penetrant beta3-adrenoceptor agonist, SR58611A (amibegron), has opened new possibilities for exploring the involvement of this receptor in stress-related disorders. By using a battery of tests measuring a wide range of anxiety-related behaviors in rodents, including the mouse defense test battery, the elevated plus-maze, social interaction, stress-induced hyperthermia, four-plate, and punished drinking tests, we demonstrated for the first time that the stimulation of the beta3 receptor by SR58611A resulted in robust anxiolytic-like effects, with minimal active doses ranging from 0.3 to 10 mg/kg p.o., depending on the procedure. These effects paralleled those obtained with the prototypical benzodiazepine anxiolytic diazepam or chlordiazepoxide. Moreover, when SR58611A was tested in acute or chronic models of depression in rodents, such as the forced-swimming and the chronic mild stress tests, it produced antidepressant-like effects, which were comparable in terms of the magnitude of the effects to those of the antidepressant fluoxetine or imipramine. Supporting these behavioral data, SR58611A modified spontaneous sleep parameters in a manner comparable to that observed with fluoxetine. Importantly, SR58611A was devoid of side effects related to cognition (as shown in the Morris water maze and object recognition tasks), motor activity (in the rotarod), alcohol interaction, or physical dependence. Antagonism studies using pharmacological tools targeting a variety of neurotransmitters involved in anxiety and depression and the use of mice lacking the beta3 adrenoceptor suggested that these effects of SR58611A are mediated by beta3 adrenoceptors. Taken as a whole, these findings indicate that the pharmacological stimulation of beta3 adrenoceptors may represent an innovative approach for the treatment of anxiety and depressive disorders.
    Neuropsychopharmacology 03/2008; 33(3):574-87. · 8.68 Impact Factor
  • European Neuropsychopharmacology - EUR NEUROPSYCHOPHARMACOL. 01/2008; 18.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SSR180711 (4-bromophenyl 1,4diazabicyclo(3.2.2) nonane-4-carboxylate, monohydrochloride) is a selective alpha7 nicotinic receptor (n-AChR) partial agonist. Based on the purported implication of this receptor in cognitive deficits associated with schizophrenia, the present study assessed efficacy of SSR180711 (i.p. and p.o.) in different types of learning and memory involved in this pathology. SSR180711 enhanced episodic memory in the object recognition task in rats and mice (MED: 0.3 mg/kg), an effect mediated by the alpha7 n-AChR, as it was no longer seen in mice lacking this receptor. Efficacy was retained after repeated treatment (eight administrations over 5 days, 1 mg/kg), indicating lack of tachyphylaxia. SSR180711 also reversed (MED: 0.3 mg/kg) MK-801-induced deficits in retention of episodic memory in rats (object recognition). The drug reversed (MED: 0.3 mg/kg) selective attention impaired by neonatal phencyclidine (PCP) treatment and restored MK-801- or PCP-induced memory deficits in the Morris or linear maze (MED: 1-3 mg/kg). In neurochemical and electrophysiological correlates of antipsychotic drug action, SSR180711 increased extracellular levels of dopamine in the prefrontal cortex (MED: 1 mg/kg) and enhanced (3 mg/kg) spontaneous firing of retrosplenial cortex neurons in rats. Selectivity of SSR180711 was confirmed as these effects were abolished by methyllycaconitine (3 mg/kg, i.p. and 1 mg/kg, i.v., respectively), a selective alpha7 n-AChR antagonist. Additional antidepressant-like properties of SSR180711 were demonstrated in the forced-swimming test in rats (MED: 1 mg/kg), the maternal separation-induced ultrasonic vocalization paradigm in rat pups (MED: 3 mg/kg) and the chronic mild stress procedure in mice (10 mg/kg o.d. for 3 weeks). Taken together, these findings characterize SSR180711 as a promising new agent for the treatment of cognitive symptoms of schizophrenia. The antidepressant-like properties of SSR180711 are of added interest, considering the high prevalence of depressive symptoms in schizophrenic patients.
    Neuropsychopharmacology 02/2007; 32(1):17-34. · 8.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we report on the pharmacological and functional profile of SSR180711 (1,4-Diazabicyclo[3.2.2]nonane-4-carboxylic acid, 4-bromophenyl ester), a new selective alpha7 acetylcholine nicotinic receptor (n-AChRs) partial agonist. SSR180711 displays high affinity for rat and human alpha7 n-AChRs (K(i) of 22+/-4 and 14+/-1 nM, respectively). Ex vivo (3)[H]alpha-bungarotoxin binding experiments demonstrate that SSR180711 rapidly penetrates into the brain (ID(50)=8 mg/kg p.o.). In functional studies performed with human alpha7 n-AChRs expressed in Xenopus oocytes or GH4C1 cells, the compound shows partial agonist effects (intrinsic activity=51 and 36%, EC(50)=4.4 and 0.9 microM, respectively). In rat cultured hippocampal neurons, SSR180711 induced large GABA-mediated inhibitory postsynaptic currents and small alpha-bungarotoxin sensitive currents through the activation of presynaptic and somato-dendritic alpha7 n-AChRs, respectively. In mouse hippocampal slices, the compound increased the amplitude of both glutamatergic (EPSCs) and GABAergic (IPSCs) postsynaptic currents evoked in CA1 pyramidal cells. In rat and mouse hippocampal slices, a concentration of 0.3 muM of SSR180711 increased long-term potentiation (LTP) in the CA1 field. Null mutation of the alpha7 n-AChR gene totally abolished SSR180711-induced modulation of EPSCs, IPSCs and LTP in mice. Intravenous administration of SSR180711 strongly increased the firing rate of single ventral pallidum neurons, extracellularly recorded in anesthetized rats. In microdialysis experiments, administration of the compound (3-10 mg/kg i.p.) dose-dependently increased extracellular acetylcholine (ACh) levels in the hippocampus and prefrontal cortex of freely moving rats. Together, these results demonstrate that SSR180711 is a selective and partial agonist at human, rat and mouse alpha7 n-AChRs, increasing glutamatergic neurotransmission, ACh release and LTP in the hippocampus.
    Neuropsychopharmacology 02/2007; 32(1):1-16. · 8.68 Impact Factor
  • European Neuropsychopharmacology - EUR NEUROPSYCHOPHARMACOL. 01/2007; 17.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Noncompetitive N-methyl-D-aspartate (NMDA) blockers induce schizophrenic-like symptoms in humans, presumably by impairing glutamatergic transmission. Therefore, a compound potentiating this neurotransmission, by increasing extracellular levels of glycine (a requisite co-agonist of glutamate), could possess antipsychotic activity. Blocking the glycine transporter-1 (GlyT1) should, by increasing extracellular glycine levels, potentiate glutamatergic neurotransmission. SSR504734, a selective and reversible inhibitor of human, rat, and mouse GlyT1 (IC50=18, 15, and 38 nM, respectively), blocked reversibly the ex vivo uptake of glycine (mouse cortical homogenates: ID50: 5 mg/kg i.p.), rapidly and for a long duration. In vivo, it increased (minimal efficacious dose (MED): 3 mg/kg i.p.) extracellular levels of glycine in the rat prefrontal cortex (PFC). This resulted in an enhanced glutamatergic neurotransmission, as SSR504734 potentiated NMDA-mediated excitatory postsynaptic currents (EPSCs) in rat hippocampal slices (minimal efficacious concentration (MEC): 0.5 microM) and intrastriatal glycine-induced rotations in mice (MED: 1 mg/kg i.p.). It normalized activity in rat models of hippocampal and PFC hypofunctioning (through activation of presynaptic CB1 receptors): it reversed the decrease in electrically evoked [3H]acetylcholine release in hippocampal slices (MEC: 10 nM) and the reduction of PFC neurons firing (MED: 0.3 mg/kg i.v.). SSR504734 prevented ketamine-induced metabolic activation in mice limbic areas and reversed MK-801-induced hyperactivity and increase in EEG spectral energy in mice and rats, respectively (MED: 10-30 mg/kg i.p.). In schizophrenia models, it normalized a spontaneous prepulse inhibition deficit in DBA/2 mice (MED: 15 mg/kg i.p.), and reversed hypersensitivity to locomotor effects of d-amphetamine and selective attention deficits (MED: 1-3 mg/kg i.p.) in adult rats treated neonatally with phencyclidine. Finally, it increased extracellular dopamine in rat PFC (MED: 10 mg/kg i.p.). The compound showed additional activity in depression/anxiety models, such as the chronic mild stress in mice (10 mg/kg i.p.), ultrasonic distress calls in rat pups separated from their mother (MED: 1 mg/kg s.c.), and the increased latency of paradoxical sleep in rats (MED: 30 mg/kg i.p.). In conclusion, SSR504734 is a potent and selective GlyT1 inhibitor, exhibiting activity in schizophrenia, anxiety and depression models. By targeting one of the primary causes of schizophrenia (hypoglutamatergy), it is expected to be efficacious not only against positive but also negative symptoms, cognitive deficits, and comorbid depression/anxiety states.
    Neuropsychopharmacology 12/2005; 30(11):1963-85. · 8.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: (5aS,8S,10aR)-5a,6,9,10-Tetrahydro,7H,11H-8,10a-methanopyrido[2',3':5,6]pyrano[2,3-d]azepine (SSR591813) is a novel compound that binds with high affinity to the rat and human alpha4beta2 nicotinic acetylcholine receptor (nAChR) subtypes (Ki = 107 and 36 nM, respectively) and displays selectivity for the alpha4beta2 nAChR (Ki, human alpha3beta4 > 1000, alpha3beta2 = 116; alpha1beta1deltagamma > 6000 nM and rat alpha7 > 6000 nM). Electrophysiological experiments indicate that SSR591813 is a partial agonist at the human alpha4beta2 nAChR subtype (EC50 = 1.3 micro M, IA =19% compared with the full agonist 1,1-dimethyl-4-phenyl-piperazinium). In vivo findings from microdialysis and drug discrimination studies confirm the partial intrinsic activity of SSR591813. The drug increases dopamine release in the nucleus accumbens shell (30 mg/kg i.p.) and generalizes to nicotine or amphetamine (10-20 mg/kg i.p.) in rats, with an efficacy approximately 2-fold lower than that of nicotine. Pretreatment with SSR591813 (10 mg/kg i.p.) reduces the dopamine-releasing and discriminative effects of nicotine. SSR591813 shows activity in animal models of nicotine dependence at doses devoid of unwanted side effects typically observed with nicotine (hypothermia and cardiovascular effects). The compound (10 mg/kg i.p.) also prevents withdrawal signs precipitated by mecamylamine in nicotine-dependent rats and partially blocks the discriminative cue of an acute precipitated withdrawal. SSR591813 (20 mg/kg i.p.) reduces i.v. nicotine self-administration and antagonizes nicotine-induced behavioral sensitization in rats. The present results confirm important role for alpha4beta2 nAChRs in mediating nicotine dependence and suggest that SSR591813, a partial agonist at this particular nAChR subtype, may have therapeutic potential in the clinical management of smoking cessation.
    Journal of Pharmacology and Experimental Therapeutics 07/2003; 306(1):407-20. · 3.89 Impact Factor