Nial R. Tanvir

Macquarie University, Sydney, New South Wales, Australia

Are you Nial R. Tanvir?

Claim your profile

Publications (68)393.11 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: We present optical, near-infrared, and radio observations of the afterglow of GRB 120521C. By modeling the multi-wavelength data set, we derive a photometric redshift of z ≈ 6.0, which we confirm with a low signal-to-noise ratio spectrum of the afterglow. We find that a model with a constant-density environment provides a good fit to the afterglow data, with an inferred density of n <~ 0.05 cm–3. The radio observations reveal the presence of a jet break at t jet ≈ 7 d, corresponding to a jet opening angle of θjet ≈ 3°. The beaming-corrected γ-ray and kinetic energies are E γ ≈ EK ≈ 3 × 1050 erg. We quantify the uncertainties in our results using a detailed Markov Chain Monte Carlo analysis, which allows us to uncover degeneracies between the physical parameters of the explosion. To compare GRB 120521C to other high-redshift bursts in a uniform manner we re-fit all available afterglow data for the two other bursts at z >~ 6 with radio detections (GRBs 050904 and 090423). We find a jet break at t jet ≈ 15 d for GRB 090423, in contrast to previous work. Based on these three events, we find that γ-ray bursts (GRBs) at z >~ 6 appear to explode in constant-density environments, and exhibit a wide range of energies and densities that span the range inferred for lower redshift bursts. On the other hand, we find a hint for narrower jets in the z >~ 6 bursts, potentially indicating a larger true event rate at these redshifts. Overall, our results indicate that long GRBs share a common progenitor population at least to z ~ 8.
    The Astrophysical Journal 01/2014; 781(1):1-. · 6.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We present an analysis of the large-scale structure of the halo of the Andromeda galaxy, based on the Pan-Andromeda Archeological Survey (PAndAS), currently the most complete map of resolved stellar populations in any galactic halo. Despite copious substructure, the global halo populations follow closely power law profiles that become steeper with increasing metallicity. We divide the sample into stream-like populations and a smooth halo component. Fitting a three-dimensional halo model reveals that the most metal-poor populations ([Fe/H]<-1.7) are distributed approximately spherically (slightly prolate with ellipticity c/a=1.09+/-0.03), with only a relatively small fraction (42%) residing in discernible stream-like structures. The sphericity of the ancient smooth component strongly hints that the dark matter halo is also approximately spherical. More metal-rich populations contain higher fractions of stars in streams (86% for [Fe/H]>-0.6). The space density of the smooth metal-poor component has a global power-law slope of -3.08+/-0.07, and a non-parametric fit shows that the slope remains nearly constant from 30kpc to 300kpc. The total stellar mass in the halo at distances beyond 2 degrees is 1.1x10^10 Solar masses, while that of the smooth component is 3x10^9 Solar masses. Extrapolating into the inner galaxy, the total stellar mass of the smooth halo is plausibly 8x10^9 Solar masses. We detect a substantial metallicity gradient, which declines from [Fe/H]=-0.7 at R=30kpc to [Fe/H]=-1.5 at R=150kpc for the full sample, with the smooth halo being 0.2dex more metal poor than the full sample at each radius. While qualitatively in-line with expectations from cosmological simulations, these observations are of great importance as they provide a prototype template that such simulations must now be able to reproduce in quantitative detail.
    The Astrophysical Journal 11/2013; 780(2). · 6.73 Impact Factor
  • Andrew Levan, Nial Tanvir
    [show abstract] [hide abstract]
    ABSTRACT: The discovery of a population of tidal disruption flares (stars torn apart by the tidal field of a supermassive black hole) offers new insight into accretion onto supermassive objects, high energy particle acceleration and the ubiquity of black holes in low mass galaxies. We have conducted a comprehensive observing campaign targetted at the best studied of these events (Swift J1644+57) utilzing many of the worlds premier observatories including HST, Spitzer, Swift, Chandra, XMM-Newton and others, and have mapped the outburst from start to finish. Here we request a final, short (0.4 hour) observation with Spitzer. This will allow us to subtract the host galaxy contribution from our earlier observations and ascertain the accurate late time shape of the optical/IR lightcurve. It will also provide the strongest possible constraints on the stellar and black hole mass in the host galaxy.
    Spitzer Proposal. 10/2013;
  • [show abstract] [hide abstract]
    ABSTRACT: We investigate the claim that all dwarf spheroidal galaxies (dSphs) reside within halos that share a common, universal mass profile as has been derived for dSphs of the Galaxy. By folding in kinematic information for 25 Andromeda dSphs, more than doubling the previous sample size, we find that a singular mass profile can not be found to fit all the observations well. Further, the best-fit dark matter density profile measured for solely the Milky Way dSphs is marginally discrepant (at just beyond the 1 sigma level) with that of the Andromeda dSphs, where a profile with lower maximum circular velocity, and hence mass, is preferred. The agreement is significantly better when three extreme Andromeda outliers, And XIX, XXI and XXV, all of which have large half-light radii (>600pc) and low velocity dispersions (sigma_v < 5km/s) are omitted from the sample. We argue that the unusual properties of these outliers are likely caused by tidal interactions with the host galaxy. We also discuss the masses of all Local Group dSphs in the context of the 'too big to fail problem', and conclude that these are potentially reconcilable with theoretical predictions when the full scope of baryonic physics and observational uncertainties are taken into account.
    09/2013;
  • [show abstract] [hide abstract]
    ABSTRACT: We investigate the claim that all dwarf spheroidal galaxies (dSphs) reside within halos that share a common, universal mass profile as has been derived for dSphs of the Galaxy. By folding in kinematic information for 25 Andromeda dSphs, more than doubling the previous sample size, we find that a singular mass profile can not be found to fit all the observations well. Further, the best-fit dark matter density profile measured for solely the Milky Way dSphs is marginally discrepant (at just beyond the 1 sigma level) with that of the Andromeda dSphs, where a profile with lower maximum circular velocity, and hence mass, is preferred. The agreement is significantly better when three extreme Andromeda outliers, And XIX, XXI and XXV, all of which have large half-light radii (>600pc) and low velocity dispersions (sigma_v < 5km/s) are omitted from the sample. We argue that the unusual properties of these outliers are likely caused by tidal interactions with the host galaxy.
    09/2013; 783(1).
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: M31 has a giant stream of stars extending far to the south and a great deal of other tidal debris in its halo, much of which is thought to be directly associated with the southern stream. We model this structure by means of Bayesian sampling of parameter space, where each sample uses an N-body simulation of a satellite disrupting in M31's potential. We combine constraints on stellar surface densities from the Isaac Newton Telescope survey of M31 with kinematic data and photometric distances. This combination of data tightly constrains the model, indicating a stellar mass at last pericentric passage of log(M_s / Msun) = 9.5+-0.1, comparable to the LMC. Any existing remnant of the satellite is expected to lie in the NE Shelf region beside M31's disk, at velocities more negative than M31's disk in this region. This rules out the prominent satellites M32 or NGC 205 as the progenitor, but an overdensity recently discovered in M31's NE disk sits at the edge of the progenitor locations found in the model. M31's virial mass is constrained in this model to be log(M200) = 12.3+-0.1, alleviating the previous tension between observational virial mass estimates and expectations from the general galactic population and the timing argument. The techniques used in this paper, which should be more generally applicable, are a powerful method of extracting physical inferences from observational data on tidal debris structures.
    Monthly Notices of the Royal Astronomical Society 07/2013; 434(4). · 5.52 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We discuss the results of the analysis of multi-wavelength data for the afterglows of GRB 081007 and GRB 090424, two bursts detected by Swift. One of them, GRB 081007, also shows a spectroscopically confirmed supernova, SN 2008hw, which resembles SN 1998bw in its absorption features, while the maximum luminosity is only about half as large as that of SN 1998bw. Bright optical flashes have been detected in both events, which allows us to derive solid constraints on the circumburst-matter density profile. This is particularly interesting in the case of GRB 081007, whose afterglow is found to be propagating into a constant-density medium, yielding yet another example of a GRB clearly associated with a massive star progenitor which did not sculpt the surroundings with its stellar wind. There is no supernova component detected in the afterglow of GRB 090424, likely due to the brightness of the host galaxy, comparable to the Milky Way. We show that the afterglow data are consistent with the presence of both forward- and reverse-shock emission powered by relativistic outflows expanding into the interstellar medium. The absence of optical peaks due to the forward shock strongly suggests that the reverse shock regions should be mildly magnetized. The initial Lorentz factor of outflow of GRB 081007 is estimated to be \Gamma ~ 200, while for GRB 090424 a lower limit of \Gamma > 170 is derived. We also discuss the prompt emission of GRB 081007, which consists of just a single pulse. We argue that neither the external forward-shock model nor the shock-breakout model can account for the prompt emission data and suggest that the single-pulse-like prompt emission may be due to magnetic energy dissipation of a Poynting-flux dominated outflow or to a dissipative photosphere.
    The Astrophysical Journal 06/2013; 774(2). · 6.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We present Hubble Space Telescope imaging of a newly-discovered faint stellar system, PAndAS-48, in the outskirts of the M31 halo. Our photometry reveals this object to be comprised of an ancient and very metal-poor stellar population with age > 10 Gyr and [Fe/H] < -2.3. Our inferred distance modulus of 24.57 +/- 0.11 confirms that PAndAS-48 is most likely a remote M31 satellite with a 3D galactocentric radius of 149 (+19 -8) kpc. We observe an apparent spread in color on the upper red giant branch that is larger than the photometric uncertainties should allow, and briefly explore the implications of this. Structurally, PAndAS-48 is diffuse, faint, and moderately flattened, with a half-light radius rh = 26 (+4 -3) pc, integrated luminosity Mv = -4.8 +/- 0.5, and ellipticity = 0.30 (+0.08 -0.15). On the size-luminosity plane it falls between the extended globular clusters seen in several nearby galaxies, and the recently-discovered faint dwarf satellites of the Milky Way; however, its characteristics do not allow us to unambiguously class it as either type of system. If PAndAS-48 is a globular cluster then it is the among the most elliptical, isolated, and metal-poor of any seen in the Local Group, extended or otherwise. Conversely, while its properties are generally consistent with those observed for the faint Milky Way dwarfs, it would be a factor ~2-3 smaller in spatial extent than any known counterpart of comparable luminosity.
    The Astrophysical Journal Letters 04/2013; 770(2). · 6.35 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We present a homogeneous kinematic analysis of red giant branch stars within 18 of the 28 Andromeda dwarf spheroidal (dSph) galaxies, obtained using the Keck I LRIS and Keck II DEIMOS spectrographs. Based on their g-i colors (taken with the CFHT MegaCam imager), physical positions on the sky, and radial velocities, we assign probabilities of dSph membership to each observed star. Using this information, the velocity dispersions, central masses and central densities of the dark matter halos are calculated for these objects, and compared with the properties of the Milky Way dSph population. We also measure the average metallicity ([Fe/H]) from the co-added spectra of member stars for each M31 dSph and find that they are consistent with the trend of decreasing [Fe/H] with luminosity observed in the Milky Way population. We find that three of our studied M31 dSphs appear as significant outliers in terms of their central velocity dispersion, And XIX, XXI and XXV, all of which have large half-light radii (>700 pc) and low velocity dispersions (sigma_v<5 km/s). In addition, And XXV has a mass-to-light ratio within its half-light radius of just [M/L]_{half}=10.3^{+7.0}_{-6.7}, making it consistent with a simple stellar system with no appreciable dark matter component within its 1 sigma uncertainties. We suggest that the structure of the dark matter halos of these outliers have been significantly altered by tides.
    The Astrophysical Journal 02/2013; 768(2). · 6.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We present observations of the afterglows and host galaxies of three short-duration gamma-ray bursts (GRBs): 100625A, 101219A and 110112A. We find that GRB 100625A occurred in a z=0.452 early-type galaxy with a stellar mass of 4.6e9 M_Sun and a stellar population age of 0.7 Gyr, and GRB 101219A originated in a star-forming galaxy at z=0.718 with a stellar mass of 1.4e9 M_Sun, a star formation rate of 16 M_Sun yr^-1, and a stellar population age of 50 Myr. We also report the discovery of the optical afterglow of GRB 110112A, which lacks a coincident host galaxy to i>26 mag and we cannot conclusively identify any field galaxy as a possible host. The bursts have inferred circumburst densities of ~1e-4-1 cm^-3, and isotropic-equivalent gamma-ray and kinetic energies of 1e50-1e51 erg. These events highlight the diversity of galaxies that host short GRBs. To quantify this diversity, we use the sample of 36 Swift short GRBs with robust associations to an environment (~1/2 of 68 short bursts detected by Swift to May 2012) and classify them as follows: late-type (50%), early-type (15%), inconclusive (20%), and host-less (lacking a coincident host galaxy to limits of >26 mag; 15%). To find likely ranges for the true late- and early-type fractions, we assign each of the host-less bursts to the late- or early-type category using probabilistic arguments, and consider the scenario that all hosts in the inconclusive category are early-type galaxies to set an upper bound on the early-type fraction. The most likely ranges for the late- and early-type fractions are ~60-80% and ~20-40%, respectively. We find no clear trend between gamma-ray duration and host type, and no change to the fractions when excluding events recently claimed as possible contaminants from the long GRB/collapsar population. Our reported demographics are consistent with a short GRB rate driven by both stellar mass and star formation.
    The Astrophysical Journal 02/2013; 769(1). · 6.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We undertake an investigation into the spatial structure of the M31 satellite system utilizing the distance distributions presented in a previous publication. These distances make use of the unique combination of depth and spatial coverage of the Pan-Andromeda Archaeological Survey (PAndAS) to provide a large, homogeneous sample consisting of 27 of M31's satellites, as well as M31 itself. We find that the satellite distribution, when viewed as a whole, is no more planar than one would expect from a random distribution of equal size. A disk consisting of 15 of the satellites is however found to be highly significant, and strikingly thin, with a root-mean-square thickness of just $12.34^{+0.75}_{-0.43}$ kpc. This disk is oriented approximately edge on with respect to the Milky Way and almost perpendicular to the Milky Way disk. It is also roughly orthogonal to the disk like structure regularly reported for the Milky Way satellite system and in close alignment with M31's Giant Stellar Stream. A similar analysis of the asymmetry of the M31 satellite distribution finds that it is also significantly larger than one would expect from a random distribution. In particular, it is remarkable that 20 of the 27 satellites most likely lie on the Milky Way side of the galaxy, with the asymmetry being most pronounced within the satellite subset forming the aforementioned disk. This lopsidedness is all the more intriguing in light of the apparent orthogonality observed between the satellite disk structures of the Milky Way and M31.
    The Astrophysical Journal 01/2013; 766(2). · 6.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: For Gamma-Ray Burst 100901A, we have obtained Gemini-North and Very Large Telescope optical afterglow spectra at four epochs: one hour, one day, three days and one week after the burst, thanks to the afterglow remaining unusually bright at late times. Apart from a wealth of metal resonance lines, we also detect lines arising from fine-structure levels of the ground state of Fe II, and from metastable levels of Fe II and Ni II at the host redshift (z = 1.4084). These lines are found to vary significantly in time. The combination of the data and modelling results shows that we detect the fall of the Ni II 4 F9/2 metastable level population, which to date has not been observed. Assuming that the population of the excited states is due to the UV-radiation of the afterglow, we estimate an absorber distance of a few hundred pc. This appears to be a typical value when compared to similar studies. We detect two intervening absorbers (z = 1.3147, 1.3179). Despite the wide temporal range of the data, we do not see significant variation in the absorption lines of these two intervening systems.
    Monthly Notices of the Royal Astronomical Society 01/2013; 430(4). · 5.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Large scale surveys of the prominent members of the Local Group have provided compelling evidence for the hierarchical formation of massive galaxies, revealing a wealth of substructure that is thought to be the debris from ancient and on-going accretion events. In this paper, we compare two extant surveys of the M31-M33 subgroup of galaxies; the Pan-Andromeda Archaeological Survey (PAndAS) of the stellar structure, and a combination of observations of the HI gaseous content, detected at 21cm. Our key finding is a marked lack of spatial correlation between these two components on all scales, with only a few potential overlaps between stars and gas.The paucity of spatial correlation significantly restricts the analysis of kinematic correlations, although there does appear to the HI kinematically associated with the Giant Stellar Stream where it passes the disk of M31. These results demonstrate that that different processes must significantly influence the dynamical evolution of the stellar and HI components of substructures, such as ram pressure driving gas away from a purely gravitational path. Detailed modelling of the offset between the stellar and gaseous substructure will provide a determination of the properties of the gaseous halo of M31 and M33.
    The Astrophysical Journal 11/2012; 763(1). · 6.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We present three newly discovered globular clusters (GCs) in the Local Group dwarf irregular NGC 6822. Two are luminous and compact, while the third is a very low luminosity diffuse cluster. We report the integrated optical photometry of the clusters, drawing on archival CFHT/Megacam data. The spatial positions of the new GCs are consistent with the linear alignment of the already-known clusters. The most luminous of the new GCs is also highly elliptical, which we speculate may be due to the low tidal field in its environment.
    Monthly Notices of the Royal Astronomical Society 11/2012; 429(2). · 5.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: In `A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude (PART I),' a new technique was introduced for obtaining distances using the TRGB standard candle. Here we describe a useful complement to the technique with the potential to further reduce the uncertainty in our distance measurements by incorporating a matched-filter weighting scheme into the model likelihood calculations. In this scheme, stars are weighted according to their probability of being true object members. We then re-test our modified algorithm using random-realization artificial data to verify the validity of the generated posterior probability distributions (PPDs) and proceed to apply the algorithm to the satellite system of M31, culminating in a 3D view of the system. Further to the distributions thus obtained, we apply a satellite-specific prior on the satellite distances to weight the resulting distance posterior distributions, based on the halo density profile. Thus in a single publication, using a single method, a comprehensive coverage of the distances to the companion galaxies of M31 is presented, encompassing the dwarf spheroidals Andromedas I - III, V, IX-XXVII and XXX along with NGC147, NGC 185, M33 and M31 itself. Of these, the distances to Andromeda XXIV - XXVII and Andromeda XXX have never before been derived using the TRGB. Object distances are determined from high-resolution tip magnitude posterior distributions generated using the Markov Chain Monte Carlo (MCMC) technique and associated sampling of these distributions to take into account uncertainties in foreground extinction and the absolute magnitude of the TRGB as well as photometric errors. The distance PPDs obtained for each object both with, and without the aforementioned prior are made available to the reader in tabular form...
    The Astrophysical Journal 09/2012; 758(1). · 6.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The host galaxies of long-duration GRBs are drawn from uniquely broad range of luminosities and redshifts. Thus they offer the possibility of studying the evolution of star-forming galaxies without the limitations of other luminosity-selected samples, which typically are increasingly biased towards the most massive systems at higher redshift. However, reaping the full benefits of this potential requires careful attention to the selection biases affecting host identification. To this end, we propose observations of a Legacy sample of 70 GRB host galaxies (an additional 70 have already been observed by Spitzer), in order to constrain the mass and luminosity function in GRB-selected galaxies at high redshift, including its dependence on redshift and on properties of the afterglow. Crucially, and unlike previous Spitzer surveys, this sample is carefully designed to be uniform and free of optical selection biases that have caused previous surveys to systematically under-represent the role of luminous, massive hosts. We also propose to extend to larger, more powerfully constraining samples the study of two science areas where Spitzer observations have recently shown spectacular success: the hosts of dust-obscured GRBs (which promise to further our understanding of the connection between GRBs and star-formation in the most luminous galaxies), and the evolution of the mass-metallicity relation at z>2 (for which GRB host observations provide particularly powerful constraints on high-z chemical evolution).
    Spitzer Proposal. 09/2012;
  • [show abstract] [hide abstract]
    ABSTRACT: We present the results from our Swift/VLT legacy survey, a VLT Large Programme aimed at characterizing the host galaxies of a homogeneously selected sample of Swift gamma-ray bursts (GRBs). The immediate goals are to determine the host luminosity function, study the effects of reddening, determine the fraction of Lyα emitters in the hosts, and obtain redshifts for targets without a reported one. We have carefully selected a sample, obeying strict and well-defined criteria: 69 targets in total. Among the results is a large optical detection rate, the lack of extremely red objects (only one possible case in the sample), and 15 new GRB redshifts with the mean redshift of the host sample assessed to be >~ 2.2.
    Proceedings of the International Astronomical Union 09/2012; 7(S279):187-190.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: GRB-selected galaxies are broadly known to be faint, blue, young, star-forming dwarf galaxies. This insight, however, is based in part on heterogeneous samples of optically selected, lower-redshift galaxies. To study the statistical properties of GRB-selected galaxies we here introduce The Optically Unbiased GRB Host (TOUGH) complete sample of 69 X-ray selected Swift GRB host galaxies spanning the redshift range 0.03-6.30 and summarise the first results of a large observational survey of these galaxies.
    08/2012;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We present simultaneous optical and near-infrared (NIR) spectroscopy of 19 Swift GRB host galaxies with VLT/X-shooter with the aim of measuring their redshifts. Galaxies were selected from The Optically Unbiased GRB Host (TOUGH) survey (15 of the 19 galaxies) or because they hosted GRBs without a bright optical afterglow. Here, we provide emission-line redshifts for 13 of the observed galaxies with brightnesses between F606W > 27 mag and R=22.9 mag (median R=24.6 mag). The median redshift is z=2.1 for all, and z=2.3 for the TOUGH hosts. Our new data significantly improve the redshift completeness of the TOUGH survey, which now stands at 77% (53 out of 69 GRBs). They furthermore provide accurate redshifts for nine prototype-dark GRBs (e.g., GRBs 071021 at z=2.452 and 080207 at z=2.086), which are exemplary of GRBs where redshifts are challenging to obtain via afterglow spectroscopy. This establishes X-shooter spectroscopy as an efficient tool for redshift determination of faint, star-forming, high-redshift galaxies such as GRB hosts. It is hence a further step towards removing the bias in GRB samples that is caused by optically-dark events, and provides the basis for a better understanding of the conditions in which GRBs form. The distribution of column densities as measured from X-ray data (N_{H,X}), for example, is closely related to the darkness of the afterglow and skewed towards low N_{H, X} values in samples that are dominated by bursts with bright optical afterglows.
    The Astrophysical Journal 05/2012; 758(1). · 6.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We present the spectroscopic and photometric evolution of the nearby (z = 0.059) spectroscopically confirmed type Ic supernova, SN 2010bh, associated with the soft, long-duration gamma-ray burst (X-ray flash) GRB 100316D. Intensive follow-up observations of SN 2010bh were performed at the ESO Very Large Telescope (VLT) using the X-shooter and FORS2 instruments. Owing to the detailed temporal coverage and the extended wavelength range (3000--24800 A), we obtained an unprecedentedly rich spectral sequence among the hypernovae, making SN 2010bh one of the best studied representatives of this SN class. We find that SN 2010bh has a more rapid rise to maximum brightness (8.0 +/- 1.0 rest-frame days) and a fainter absolute peak luminosity (L_bol~3e42 erg/s) than previously observed SN events associated with GRBs. Our estimate of the ejected (56)Ni mass is 0.12 +/- 0.02 Msun. From the broad spectral features we measure expansion velocities up to 47,000 km/s, higher than those of SNe 1998bw (GRB 980425) and 2006aj (GRB 060218). Helium absorption lines He I lambda5876 and He I 1.083 microm, blueshifted by ~20,000--30,000 km/s and ~28,000--38,000 km/s, respectively, may be present in the optical spectra. However, the lack of coverage of the He I 2.058 microm line prevents us from confirming such identifications. The nebular spectrum, taken at ~186 days after the explosion, shows a broad but faint [O I] emission at 6340 A. The light-curve shape and photospheric expansion velocities of SN 2010bh suggest that we witnessed a highly energetic explosion with a small ejected mass (E_k ~ 1e52 erg and M_ej ~ 3 Msun). The observed properties of SN 2010bh further extend the heterogeneity of the class of GRB supernovae.
    The Astrophysical Journal 11/2011; 753(1). · 6.73 Impact Factor

Publication Stats

583 Citations
393.11 Total Impact Points

Institutions

  • 2013
    • Macquarie University
      • Department of Physics and Astronomy
      Sydney, New South Wales, Australia
    • The Astronomical Observatory of Brera
      Merate, Lombardy, Italy
  • 2007–2013
    • University of Leicester
      • Department of Physics and Astronomy
      Leiscester, England, United Kingdom
  • 2002–2008
    • University of Hertfordshire
      • • School of Physics, Astronomy and Mathematics
      • • Centre for Astrophysics Research (CAR)
      Hatfield, England, United Kingdom
  • 2003
    • University of Copenhagen
      • Dark Cosmology Centre (DARK)
      Copenhagen, Capital Region, Denmark
  • 2001
    • Pennsylvania State University
      • Department of Astronomy and Astrophysics
      University Park, Maryland, United States
  • 1997–1998
    • University of Cambridge
      • Institute of Astronomy
      Cambridge, England, United Kingdom