A. Vikhlinin

Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, United States

Are you A. Vikhlinin?

Claim your profile

Publications (231)747 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hot, X-ray-emitting intracluster medium (ICM) is the dominant baryonic constituent of clusters of galaxies. In the cores of many clusters, radiative energy losses from the ICM occur on timescales significantly shorter than the age of the system. Unchecked, this cooling would lead to massive accumulations of cold gas and vigorous star formation, in contradiction to observations. Various sources of energy capable of compensating these cooling losses have been proposed, the most promising being heating by the supermassive black holes in the central galaxies through inflation of bubbles of relativistic plasma. Regardless of the original source of energy, the question of how this energy is transferred to the ICM has remained open. Here we present a plausible solution to this question based on deep Chandra X-ray observatory data and a new data-analysis method that enables us to evaluate directly the ICM heating rate due to the dissipation of turbulence. We find that turbulent heating is sufficient to offset radiative cooling and indeed appears to balance it locally at each radius - it might therefore be the key element in resolving the gas cooling problem in cluster cores and, more universally, in atmospheres of X-ray gas-rich systems.
    Nature. 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: X-ray cavities are key tracers of mechanical (or radio mode) heating arising from the active galactic nuclei (AGN) in brightest cluster galaxies. We report on a survey for X-ray cavities in 83 massive, high-redshift (0.4<z<1.2) clusters of galaxies selected by their Sunyaev-Zel'dovich signature in the South Pole Telescope data. Based on Chandra X-ray images, we find a total of 6 clusters having symmetric pairs of surface brightness depressions consistent with the picture of radio jets inflating X-ray cavities in the intracluster medium. The majority of these detections are of relatively low significance and require deeper follow-up data in order to be confirmed. Further, due to the limitations of Chandra at high redshift, this search misses small (<10 kpc), unresolved X-ray cavities at high (z>0.5) redshift. Despite these limitations, our results suggest that the power generated by AGN feedback in brightest cluster galaxies has remained unchanged for over half of the age of the Universe (>7 Gyrs at z=0.8). On average, the detected X-ray cavities have powers of 0.8-5*10^45 erg/s, enthalpies of 3-6*10^59 erg, and radii of 17 kpc. Integrating over 7 Gyrs, we find that the supermassive black holes in the brightest cluster galaxies may have accreted 10^8 to several 10^9M_sun of material to power these outflows. This level of accretion indicates that significant supermassive black hole growth may occur not only at early times, in the quasar era, but at late times as well. We also find that X-ray cavities at high-redshift may inject an excess heat of 0.1-1.0 keV per particle into the hot intracluster medium above and beyond the energy needed to offset cooling. This value is similar to the energy needed to preheat clusters, break self-similarity, and explain the excess entropy in hot atmospheres.
    09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a catalog of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect signature from 2500 deg$^2$ of South Pole Telescope (SPT) data. This work represents the complete sample of clusters detected at high significance in the 2500-square-degree SPT-SZ survey, which was completed in 2011. A total of 677 (409) cluster candidates are identified above a signal-to-noise threshold of $\xi$ =4.5 (5.0). Ground- and space-based optical and near-infrared (NIR) imaging confirms overdensities of similarly colored galaxies in the direction of 516 (or 76%) of the $\xi$>4.5 candidates and 387 (or 95%) of the $\xi$>5 candidates; the measured purity is consistent with expectations from simulations. Of these confirmed clusters, 415 were first identified in SPT data, including 251 new discoveries reported in this work. We estimate photometric redshifts for all candidates with identified optical and/or NIR counterparts; we additionally report redshifts derived from spectroscopic observations for 141 of these systems. The mass threshold of the catalog is roughly independent of redshift above $z$~0.25 leading to a sample of massive clusters that extends to high redshift. The median mass of the sample is $M_{\scriptsize 500c}(\rho_\mathrm{crit})$ ~ 3.5 x 10$^{14} M_\odot h^{-1}$, the median redshift is $z_{med}$ =0.55, and the highest-redshift systems are at $z$>1.4. The combination of large redshift extent, clean selection, and high typical mass makes this cluster sample of particular interest for cosmological analyses and studies of cluster formation and evolution.
    09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: (Abridged) We use 95, 150, and 220GHz observations from the SPT to examine the SZE signatures of a sample of 46 X-ray selected groups and clusters drawn from ~6 deg^2 of the XMM-BCS. These systems extend to redshift z=1.02, have characteristic masses ~3x lower than clusters detected directly in the SPT data and probe the SZE signal to the lowest X-ray luminosities (>10^42 erg s^-1) yet. We develop an analysis tool that combines the SZE information for the full ensemble of X-ray-selected clusters. Using X-ray luminosity as a mass proxy, we extract selection-bias corrected constraints on the SZE significance- and Y_500-mass relations. The SZE significance- mass relation is in good agreement with an extrapolation of the relation obtained from high mass clusters. However, the fit to the Y_500-mass relation at low masses, while in good agreement with the extrapolation from high mass SPT clusters, is in tension at 2.8 sigma with the constraints from the Planck sample. We examine the tension with the Planck relation, discussing sample differences and biases that could contribute. We also present an analysis of the radio galaxy point source population in this ensemble of X-ray selected systems. We find 18 of our systems have 843 MHz SUMSS sources within 2 arcmin of the X-ray centre, and three of these are also detected at significance >4 by SPT. Of these three, two are associated with the group brightest cluster galaxies, and the third is likely an unassociated quasar candidate. We examine the impact of these point sources on our SZE scaling relation analyses and find no evidence of biases. We also examine the impact of dusty galaxies using constraints from the 220 GHz data. The stacked sample provides 2.8$\sigma$ significant evidence of dusty galaxy flux, which would correspond to an average underestimate of the SPT Y_500 signal that is (17+-9) per cent in this sample of low mass systems.
    07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a velocity dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg2 of the survey along with 63 velocity dispersion ($\sigma_v$) and 16 X-ray Yx measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. The calibrations using $\sigma_v$ and Yx are consistent at the $0.6\sigma$ level, with the $\sigma_v$ calibration preferring ~16% higher masses. We use the full cluster dataset to measure $\sigma_8(\Omega_ m/0.27)^{0.3}=0.809\pm0.036$. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming the sum of the neutrino masses is $\sum m_\nu=0.06$ eV, we find the datasets to be consistent at the 1.0$\sigma$ level for WMAP9 and 1.5$\sigma$ for Planck+WP. Allowing for larger $\sum m_\nu$ further reconciles the results. When we combine the cluster and Planck+WP datasets with BAO and SNIa, the preferred cluster masses are $1.9\sigma$ higher than the Yx calibration and $0.8\sigma$ higher than the $\sigma_v$ calibration. Given the scale of these shifts (~44% and ~23% in mass, respectively), we execute a goodness of fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the multi-probe dataset, we measure $\Omega_ m=0.299\pm0.009$ and $\sigma_8=0.829\pm0.011$. Within a $\nu$CDM model we find $\sum m_\nu = 0.148\pm0.081$ eV. We present a consistency test of the cosmic growth rate. Allowing both the growth index $\gamma$ and the dark energy equation of state parameter $w$ to vary, we find $\gamma=0.73\pm0.28$ and $w=-1.007\pm0.065$, demonstrating that the expansion and the growth histories are consistent with a LCDM model ($\gamma=0.55; \,w=-1$).
    07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the design of a new polarization sensitive receiver, SPT-3G, for the 10-meter South Pole Telescope (SPT). The SPT-3G receiver will deliver a factor of ~20 improvement in mapping speed over the current receiver, SPTpol. The sensitivity of the SPT-3G receiver will enable the advance from statistical detection of B-mode polarization anisotropy power to high signal-to-noise measurements of the individual modes, i.e., maps. This will lead to precise (~0.06 eV) constraints on the sum of neutrino masses with the potential to directly address the neutrino mass hierarchy. It will allow a separation of the lensing and inflationary B-mode power spectra, improving constraints on the amplitude and shape of the primordial signal, either through SPT-3G data alone or in combination with BICEP-2/KECK, which is observing the same area of sky. The measurement of small-scale temperature anisotropy will provide new constraints on the epoch of reionization. Additional science from the SPT-3G survey will be significantly enhanced by the synergy with the ongoing optical Dark Energy Survey (DES), including: a 1% constraint on the bias of optical tracers of large-scale structure, a measurement of the differential Doppler signal from pairs of galaxy clusters that will test General Relativity on ~200 Mpc scales, and improved cosmological constraints from the abundance of clusters of galaxies.
    07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: (Abridged) We present the results of an X-ray analysis of 80 galaxy clusters selected in the 2500 deg^2 South Pole Telescope survey and observed with the Chandra X-ray Observatory. We divide the full sample into subsamples of ~20 clusters based on redshift and central density, performing an X-ray fit to all clusters in a subsample simultaneously, assuming self-similarity of the temperature profile. This approach allows us to constrain the shape of the temperature profile over 0<r<1.5R500, which would be impossible on a per-cluster basis, since the observations of individual clusters have, on average, 2000 X-ray counts. The results presented here represent the first constraints on the evolution of the average temperature profile from z=0 to z=1.2. We find that high-z (0.6<z<1.2) clusters are slightly (~40%) cooler both in the inner (r<0.1R500) and outer (r>R500) regions than their low-z (0.3<z<0.6) counterparts. Combining the average temperature profile with measured gas density profiles from our earlier work, we infer the average pressure and entropy profiles for each subsample. Overall, our observed pressure profiles agree well with earlier lower-redshift measurements, suggesting minimal redshift evolution in the pressure profile outside of the core. We find no measurable redshift evolution in the entropy profile at r<0.7R500. We observe a slight flattening of the entropy profile at r>R500 in our high-z subsample. This flattening is consistent with a temperature bias due to the enhanced (~3x) rate at which group-mass (~2 keV) halos, which would go undetected at our survey depth, are accreting onto the cluster at z~1. This work demonstrates a powerful method for inferring spatially-resolved cluster properties in the case where individual cluster signal-to-noise is low, but the number of observed clusters is high.
    04/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two adjustable X-ray optics approaches are being developed for thin grazing incidence optics for astronomy. The first approach employs thin film piezoelectric material sputter deposited as a continuous layer on the back of thin, lightweight Wolter-I mirror segments. The piezoelectric material is used to correct mirror figure errors from fabrication, mounting/alignment, and any ground to orbit changes. The goal of this technology is to produce Wolter mirror segment pairs corrected to 0.5 arc sec image resolution. With the combination of high angular resolution and lightweight, this mirror technology is suitable for the Square Meter Arc Second Resolution Telescope for X-rays (SMART-X) mission concept.. The second approach makes use of electrostrictive adjusters and full shell nickel/cobalt electroplated replication mirrors. An array of radial adjusters is used to deform the full shells to correct the lowest order axial and azimuthal errors, improving imaging performance from the 10 - 15 arc sec level to ~ 5 arc sec. We report on recent developments in both technologies. In particular, we discuss the use of in-situ strain gauges on the thin piezo film mirrors for use as feedback on piezoelectric adjuster functionality, including their use for on-orbit figure correction. We also report on the first tests of full shell nickel/cobalt mirror correction with radial adjusters.
    01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe a method for measuring the integrated Comptonization (YSZ) of clusters of galaxies from measurements of the Sunyaev-Zel'dovich (SZ) effect in multiple frequency bands and use this method to characterize a sample of galaxy clusters detected in South Pole Telescope (SPT) data. We test this method on simulated cluster observations and verify that it can accurately recover cluster parameters with negligible bias. In realistic simulations of an SPT-like survey, with realizations of cosmic microwave background anisotropy, point sources, and atmosphere and instrumental noise at typical SPT-SZ survey levels, we find that YSZ is most accurately determined in an aperture comparable to the SPT beam size. We demonstrate the utility of this method to measure YSZ and to constrain mass scaling relations using X-ray mass estimates for a sample of 18 galaxy clusters from the SPT-SZ survey. Measuring YSZ within a 0.75' radius aperture, we find an intrinsic log-normal scatter of 21+/-11% in YSZ at a fixed mass. Measuring YSZ within a 0.3 Mpc projected radius (equivalent to 0.75' at the survey median redshift z = 0.6), we find a scatter of 26+/-9%. Prior to this study, the SPT observable found to have the lowest scatter with mass was cluster detection significance. We demonstrate, from both simulations and SPT observed clusters, that YSZ measured within an aperture comparable to the SPT beam size is equivalent, in terms of scatter with cluster mass, to SPT cluster detection significance.
    12/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The adiabatic evolution of the temperature of the cosmic microwave background (CMB) is a key prediction of standard cosmology. We study deviations from the expected adiabatic evolution of the CMB temperature of the form $T(z) =T_0(1+z)^{1-\alpha}$ using measurements of the spectrum of the Sunyaev Zel'dovich Effect with the South Pole Telescope (SPT). We present a method for using the ratio of the Sunyaev Zel'dovich signal measured at 95 and 150 GHz in the SPT data to constrain the temperature of the CMB. We demonstrate that this approach provides unbiased results using mock observations of clusters from a new set of hydrodynamical simulations. We apply this method to a sample of 158 SPT-selected clusters, spanning the redshift range $0.05 < z < 1.35$, and measure $\alpha = 0.017^{+0.030}_{-0.028}$, consistent with the standard model prediction of $\alpha=0$. In combination with other published results, we constrain $\alpha = 0.011 \pm 0.016$, an improvement of $\sim 20\%$ over published constraints. This measurement also provides a strong constraint on the effective equation of state in models of decaying dark energy $w_\mathrm{eff} = -0.987^{+0.016}_{-0.017}$.
    Monthly Notices of the Royal Astronomical Society 12/2013; 440(3). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present optical spectroscopy of galaxies in clusters detected through the Sunyaev-Zel'dovich (SZ) effect with the South Pole Telescope (SPT). We report our own measurements of $61$ spectroscopic cluster redshifts, and $48$ velocity dispersions each calculated with more than $15$ member galaxies. This catalog also includes $19$ dispersions of SPT-observed clusters previously reported in the literature. The majority of the clusters in this paper are SPT-discovered; of these, most have been previously reported in other SPT cluster catalogs, and five are reported here as SPT discoveries for the first time. By performing a resampling analysis of galaxy velocities, we find that unbiased velocity dispersions can be obtained from a relatively small number of member galaxies ($\lesssim 30$), but with increased systematic scatter. We use this analysis to determine statistical confidence intervals that include the effect of membership selection. We fit scaling relations between the observed cluster velocity dispersions and mass estimates from SZ and X-ray observables. In both cases, the results are consistent with the scaling relation between velocity dispersion and mass expected from dark-matter simulations. We measure a $\sim$30% log-normal scatter in dispersion at fixed mass, and a $\sim$10% offset in the normalization of the dispersion-mass relation when compared to the expectation from simulations, which is within the expected level of systematic uncertainty.
    The Astrophysical Journal 11/2013; 792(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a novel quantitative scheme of cluster classification based on the morphological properties that are manifested in X-ray images. We use a conventional radial surface brightness concentration parameter (c_{SB}) as defined previously by others, and a new asymmetry parameter, which we define in this paper. Our asymmetry parameter, which we refer to as photon asymmetry ($A_{phot}), was developed as a robust substructure statistic for cluster observations with only a few thousand counts. To demonstrate that photon asymmetry exhibits better stability than currently popular power ratios and centroid shifts, we artificially degrade the X-ray image quality by: (a) adding extra background counts, (b) eliminating a fraction of the counts, (c) increasing the width of the smoothing kernel, and (d) simulating cluster observations at higher redshift. The asymmetry statistic presented here has a smaller statistical uncertainty than competing substructure parameters, allowing for low levels of substructure to be measured with confidence. A_{phot} is less sensitive to the total number of counts than competing substructure statistics, making it an ideal candidate for quantifying substructure in samples of distant clusters covering wide range of observational S/N. Additionally, we show that the asymmetry-concentration classification separates relaxed, cool core clusters from morphologically-disturbed mergers, in agreement with by-eye classifications. Our algorithms, freely available as Python scripts (https://github.com/ndaniyar/aphot) are completely automatic and can be used to rapidly classify galaxy cluster morphology for large numbers of clusters without human intervention.
    The Astrophysical Journal 09/2013; 779(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SPT-CLJ2040-4451 -- spectroscopically confirmed at z = 1.478 -- is the highest redshift galaxy cluster yet discovered via the Sunyaev-Zel'dovich effect. SPT-CLJ2040-4451 was identified in the first 720 deg^2 of the South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey, and confirmed in follow-up imaging and spectroscopy. From multi-object spectroscopy with Magellan-I/Baade+IMACS we measure spectroscopic redshifts for 15 cluster member galaxies, all of which have strong [O II] 3727 emission. SPT-CLJ2040-4451 has an SZ-measured mass of M_500,SZ = 3.2 +/- 0.8 X 10^14 M_Sun/h_70, corresponding to M_200,SZ = 5.8 +/- 1.4 X 10^14 M_Sun/h_70. The velocity dispersion measured entirely from blue star forming members is sigma_v = 1500 +/- 520 km/s. The prevalence of star forming cluster members (galaxies with > 1.5 M_Sun/yr) implies that this massive, high-redshift cluster is experiencing a phase of active star formation, and supports recent results showing a marked increase in star formation occurring in galaxy clusters at z >1.4. We also compute the probability of finding a cluster as rare as this in the SPT-SZ survey to be >99.5%, indicating that its discovery is not in tension with the concordance Lambda-CDM cosmological model.
    07/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present first results on the cooling properties derived from Chandra X-ray observations of 83 high-redshift (0.3 < z < 1.2) massive galaxy clusters selected by their Sunyaev-Zel'dovich signature in the South Pole Telescope data. We measure each cluster's central cooling time, central entropy, and mass deposition rate, and compare to local cluster samples. We find no significant evolution from z~0 to z~1 in the distribution of these properties, suggesting that cooling in cluster cores is stable over long periods of time. We also find that the average cool core entropy profile in the inner ~100 kpc has not changed dramatically since z ~ 1, implying that feedback must be providing nearly constant energy injection to maintain the observed "entropy floor" at ~10 keV cm^2. While the cooling properties appear roughly constant over long periods of time, we observe strong evolution in the gas density profile, with the normalized central density (rho_0/rho_crit) increasing by an order of magnitude from z ~ 1 to z ~ 0. When using metrics defined by the inner surface brightness profile of clusters, we find an apparent lack of classical, cuspy, cool-core clusters at z > 0.75, consistent with earlier reports for clusters at z > 0.5 using similar definitions. Our measurements indicate that cool cores have been steadily growing over the 8 Gyr spanned by our sample, consistent with a constant, ~150 Msun/yr cooling flow that is unable to cool below entropies of 10 keV cm^2 and, instead, accumulates in the cluster center. We estimate that cool cores began to assemble in these massive systems at z ~ 1, which represents the first constraints on the onset of cooling in galaxy cluster cores. We investigate several potential biases which could conspire to mimic this cool core evolution and are unable to find a bias that has a similar redshift dependence and a substantial amplitude.
    The Astrophysical Journal 05/2013; 774(1). · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Clusters of galaxies were first recognized through overdensities of galaxies. With the advent of X-ray telescopes, large numbers of clusters were by found by the spatially extended nature of their X-ray emission. Today with the availability of millimeter wave telescopes capable of finding clusters through the Sunyaev-Zeldovich effect, it is possible to compare the overall characteristics of clusters detected by different methods and the specific properties of individual clusters measured in different ways. Here we compare the X-ray properties of relatively low redshift clusters measured with the Chandra Observatory with their SZ signal measured in the Planck mission. Based on a sample of 114 Planck detected clusters of galaxies, we show the SZ signal strengths are strongly correlated with X-ray measured mass proxies, in particular those measured through the cluster X-ray luminosities, so long as the cluster core is excluded, and those measured from Y_X, the product of the gas temperature and gas mass, which is an X-ray analog of the SZ signal Y_SZ. A comparison of the hundred brightest X-ray clusters and the hundred Planck clusters with the highest SZ signals shows that the Planck ESZ cluster sample is more X-ray luminous and more massive than X-ray cluster sample, due in part to the larger volume that Planck clusters are detected over, due to the nearly redshift independence of the SZ strength. As previously found, on average the SZ cluster samples show a larger fraction of clusters undergoing mergers than do X-ray selected samples. For the Planck ESZ cluster PLCKESZ G189.84-37.24, we report the detection of extended X-ray emission associated with an overdensity of distant galaxies located 6.5 arcmin from the Planck ESZ position. Future X-ray observations of the Planck low redshift (z<0.35) cluster sample will better define the low redshift cluster mass function for comparison to high redshift SZ selected cluster samples to better constrain cosmological parameters, particularly the equation of state for dark energy.
    Astronomische Nachrichten 04/2013; · 1.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here, we present the final stacked ``coadded'' analysed in the paper. The data set consists of observations of eight fields centred on galaxy clusters selected from the 400d survey (Burenin et al., 2007, Cat. J/ApJS/172/561, Vikhlinin et al. 2009ApJ...692.1033V). All of these clusters have been observed with the Megacam wide-field imager, then located at the 6.5m MMT telescope at Fred Lawrence Whipple Observatory (files MMT*). The galaxy shapes analysed in our article were drawn from the r' band images (*_r.fits), consistently. For four of the clusters, auxiliary bands (g', i') could be observed and taken into account for galaxy selection. Note that the r' band of CL 0030+2618 and the g' and r' bands were taken in non-photometric conditions, while the rest of the data is of photometric quality. We also include observations obtained with the CFHT MegaCam/MegaPrime imager (files CFHT*) for CL 1701+6414 in the g'r'i'z' filters, which we analysed for comparison. Note that the exposure time of these images in accessible in the fits headers via the TEXPTIME keyword, not via EXPTIME. For all images, we also include the weight and flag images used in our analysis, giving the pixel-to-pixel quality variation in the main files and regions excluded from the analysis, respectively. (2 data files).
    VizieR Online Data Catalog. 10/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The catalog presented here was derived from multi-epoch observations taken during AO3 (PI: K. Nandra), AO6, and AO9, combined with Guaranteed Time Observations (PI: S. Murray; AO9). All Chandra observations for XDEEP2 are publicly available through the Chandra X-Ray Center (CXC) Archive. In Table 2 we provide the individual pointing details for each observation and field. (3 data files).
    VizieR Online Data Catalog. 10/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on technical progress made over the past year developing thin film piezoelectric adjustable grazing incidence optics. We believe such mirror technology represents a solution to the problem of developing lightweight, sub-arc second imaging resolution X-ray optics. Such optics will be critical to the development next decade of astronomical X-ray observatories such as SMART-X, the Square Meter Arc Second Resolution X-ray Telescope. SMART-X is the logical heir to Chandra, with 30 times the collecting area and Chandra-like imaging resolution, and will greatly expand the discovery space opened by Chandra’s exquisite imaging resolution. In this paper we discuss deposition of thin film piezoelectric material on flat glass mirrors. For the first time, we measured the local figure change produced by energizing a piezo cell - the influence function, and showed it is in good agreement with finite element modeled predictions. We determined that at least one mirror substrate material is suitably resistant to piezoelectric deposition processing temperatures, meaning the amplitude of the deformations introduced is significantly smaller than the adjuster correction dynamic range. Also, using modeled influence functions and IXO-based mirror figure errors, the residual figure error was predicted post-correction. The impact of the residual figure error on imaging performance, including any mid-frequency ripple introduced by the corrections, was modeled. These, and other, results are discussed, as well as future technology development plans.
    Proc SPIE 09/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: SMART-X is a mission concept for a 2.3 m2 effective area, 0.5" angular resolution X-ray telescope, with 5' FOV, 1" pixel size microcalorimeter, 22' FOV imager, and high-throughput gratings.
    Proc SPIE 09/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the cores of some clusters of galaxies the hot intracluster plasma is dense enough that it should cool radiatively in the cluster's lifetime, leading to continuous 'cooling flows' of gas sinking towards the cluster centre, yet no such cooling flow has been observed. The low observed star-formation rates and cool gas masses for these 'cool-core' clusters suggest that much of the cooling must be offset by feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical and infrared observations of the galaxy cluster SPT-CLJ2344-4243 (ref. 11) at redshift z = 0.596. These observations reveal an exceptionally luminous (8.2 × 10(45) erg s(-1)) galaxy cluster that hosts an extremely strong cooling flow (around 3,820 solar masses a year). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (formation of around 740 solar masses a year), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool-core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star-formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form through accretion of the intracluster medium, rather than (as is currently thought) assembling entirely via mergers.
    Nature 08/2012; 488(7411):349-52. · 38.60 Impact Factor

Publication Stats

6k Citations
747.00 Total Impact Points

Institutions

  • 1996–2014
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
  • 2011–2013
    • University of Chicago
      • • Kavli Institute for Cosmological Physics
      • • Department of Astronomy and Astrophysics
      Chicago, Illinois, United States
  • 2012
    • Massachusetts Institute of Technology
      • Kavli Institute for Astrophysics and Space Research
      Cambridge, MA, United States
  • 1994–2012
    • Russian Academy of Sciences
      • Space Research Institute
      Moskva, Moscow, Russia
  • 1994–2011
    • Space Research Institute
      Moskva, Moscow, Russia
  • 2009
    • Technische Universität München
      München, Bavaria, Germany
  • 2004
    • The University of Arizona
      • Department of Astronomy
      Tucson, Arizona, United States
  • 1997–1998
    • University of Virginia
      • Department of Astronomy
      Charlottesville, Virginia, United States