Oliver Bock

Hannover Medical School, Hannover, Lower Saxony, Germany

Are you Oliver Bock?

Claim your profile

Publications (76)332.76 Total impact

  • G. Buesche, A. Giagounidis, O. Bock, H. Teoman, G. Göhring, B. Schlegelberger, S. Dieck, A. Ganser, A. List, J.M. Bennett, C. Aul, H.H. Kreipe
    Leukemia Research 05/2013; 37:S113. · 2.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A subset of myeloproliferative disorders (MPN) and myelodyplastic syndromes (MDS) evolves to fibrosis of the bone marrow associated with haematopoietic insufficiency. We have been interested in chemokines involved in fibrogenesis within the bone marrow. Besides TGFβ we could identify a number of additional mediators including osteoprotegerin and bone morphogenic proteins. In MPN JAK2 or MPL mutation are not linked to the propensity for bone marrow fibrosis. The hypothesis that an increased intramedullary decay of megakaryocytes undergoing appotosis takes place within the marrow, thus liberating fibrogenic cytokines, could not be confirmed. On the contrary, megakaryocytes in primary fibrosis revealed low expression of proapoptotic genes such as BNIP3. Interestingly, BNIP 3 expression was down regulated in megakaryocytic cell lines kept in hypoxic conditions. Furthermore, expression arrays revealed hypoxia inducible genes to be up-regulated in primary myelofibrosis. Fibrotic MPN are characterized by aberrant proplatelet formation which represent cytoplasmic pseudopodia and normally extend into the sinus. In fibrotic MPN orientation of proplatelet growth appears to be disturbed, which could lead to an aberrant deposition of platelets in the marrow with consecutive liberation of fibrogenic cytokines.
    Fibrogenesis & Tissue Repair 06/2012; 5 Suppl 1:S21.
  • American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado; 05/2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: After publication of our article 1, we realized the need for posting a correction note in order to prevent i) overinterpretation of some results by the readers and ii) concerns about potentially unintended misguidance by the authors.
    Journal of Translational Medicine 03/2011; 9:24. · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The microRNA/miR deregulation in BCR-ABL-negative myelodysplastic-myeloproliferative neoplasms (MDS/MPN) is not known. Myelopoiesis-associated miR-10a, miR-17-5p, miR-155, miR-223 and miR-424 were analysed by real-time polymerase chain reaction (PCR) in bone marrow cells of atypical chronic myeloid leukaemia (aCML, n = 7) and chronic myelomonocytic leukaemia (CMML, n = 8) and were compared to BCR-ABL-positive chronic myelogenous leukaemia (CML, n = 10) and non-neoplastic haematopoiesis (n = 10). Down-regulation of miR-10a was found in CMML but also in CML (each p < 0.05, versus controls). Overexpression of miR-424 was detected in aCML (p < 0.05, versus CML and controls). Despite different compositions of bone marrow cells, expression of myelopoiesis-associated microRNA shows mainly similar patterns in aCML and its main differential diagnosis CMML and does not allow discrimination of these two MDS/MPN entities. Therefore, the link of deregulated microRNA expression to disease-related phenotype and the underlying molecular mechanism are still unknown.
    Annals of Hematology 03/2011; 90(3):307-13. · 2.40 Impact Factor
  • Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 03/2011; 25(6):1050-3. · 10.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary myelofibrosis (PMF) is a chronic myeloproliferative neoplasm showing aberrant bone marrow remodeling with increased angiogenesis, progressive matrix accumulation, and fibrosis development. Thrombospondins (TSP) are factors sharing pro-fibrotic and anti-angiogenic properties, and have not been addressed in PMF before. We investigated the expression of TSP-1 and TSP-2 in PMF related to the stage of myelofibrosis (n = 51) and in individual follow-up biopsies by real-time PCR, immunohistochemistry, and confocal laser scanning microscopy (CLSM). TSP-1 was significantly overexpressed (p < 0.05) in all stages of PMF when compared to controls. Individual follow-up biopsies showed involvement of TSP-1 during progressive myelofibrosis. TSP-2 was barely detectable but 40% of cases with advanced myelofibrosis showed a strong expression. Megakaryocytes and interstitial proplatelet formations were shown to be the relevant source for TSP-1 in PMF. Stroma cells like endothelial cells and fibroblasts showed no TSP-1 labeling when double-immunofluorescence staining and CLSM were applied. Based on its dual function, TSP-1 in PMF is likely to be a mediator within a pro-fibrotic environment which discriminates from ET cases. On the other hand, TSP-1 is a factor acting (ineffectively) against exaggerated angiogenesis. Both features suggest TSP-1 to be a biomarker for monitoring a PMF-targeted therapy.
    Annals of Hematology 01/2011; 90(1):33-40. · 2.40 Impact Factor
  • Blood 12/2010; 116(23):5073-4. · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proplatelets represent pseudopodia of megakaryocytes which extend into bone marrow sinuses to release platelets. Proplatelets were visualized by immunohistochemical and confocal microscopy. In trephines from essential thrombocythaemia (ET, n=10), fibrotic (n=10) and pre-fibrotic (n=10) primary myelofibrosis (PMF) there was a significant increase of proplatelet density compared with normal bone marrow samples (n=10; p<0.001). Manifest fibrosis exhibited the highest density and volume ratio with significant differences to non-fibrotic PMF (p<0.001) and ET (p<0.001). This study demonstrates that besides megakaryocytic proliferation extensive pseudopodial proplatelet formation provides a hallmark of MPN. Fibrosing differ from non-fibrosing MPN by density and size of aberrant proplatelets.
    Leukemia research 11/2010; 34(11):1424-9. · 2.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monitoring of minimal residual disease (MRD) after allogeneic (allo)-SCT for myelofibrosis (MF) allows recognizing the depth of remission and thus guides application of appropriate therapeutic interventions. MPL W515L/K mutations, which are detected in 5-10% of JAK2V617F-negative patients, may be useful for this purpose. Using a highly sensitive quantitative PCR method, we tested 90 patients with MF who underwent allo-SCT for the presence of MPL W515L/K mutations. Two patients with primary MF were found to harbor MPLW515L while no patient was positive for MPLW515K mutation. Both patients were JAK2V617F negative and cleared the mutation rapidly after allo-SCT and remained negative for a median follow-up of 19 months. The results of molecular monitoring correlated well with other remission parameters such as normalization of peripheral blood counts and morphology and complete donor chimerism. We conclude that MPLW515L can be cleared after allo-SCT and hence may be used as an MRD marker in a proportion of JAK2V617F-negative MF patients.
    Bone marrow transplantation 09/2010; 45(9):1404-7. · 3.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Obliterative airway remodelling is a morphological sequence in a variety of pulmonary diseases. Notably, bronchiolitis obliterans represents one of the key complications of lung transplantation, induced by (immigrating) myofibroblasts. A comparative expression analysis of obliterative airway remodelling in transplanted and non-transplanted patients has not been reported so far. Obliterated and unremodelled airways from explanted lungs (n = 19) from patients suffering from chronic allograft dysfunction, infection, graft-versus-host disease and toxic exposure were isolated by laser-assisted microdissection. Airways from lung allografts harvested shortly before and after transplantation (n = 4) as well as fibroblastic foci from lungs with interstitial pulmonary fibrosis (n = 4) served as references. Pre-amplified cDNA was analysed by quantitative real-time RT-PCR for expression of fibrosis, inflammation and apoptosis-associated genes. Composition of infiltrating cells and protein expression were assessed by conventional histology and immunohistochemistry. Bronchiolitis obliterans in transplanted patients showed a significant increase of BMP-7 expression (p = 0.0141 compared with controls), while TGF-beta1 and FGF-2 as well as BMP-4 and BMP-7 were up-regulated in fibroblastic foci in interstitial pulmonary fibrosis (p < 0.0424 compared with controls). Regarding other fibrosis-associated genes (BMP-6, SMAD-3, CASP-3 and CASP-9, FASLG, NF-KB1, IL-1 and IL-2) as well as cellularity and cellular composition, no significant differences between obliterative airway remodelling in transplanted and non-transplanted patients could be shown. Obliterative airway remodelling in lung allografts and in non-transplanted patients share many morphological and genetic traits. BMPs, especially BMP-7, warrant further investigation as possible markers for the aggravation of airway remodelling.
    Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin 09/2010; 457(3):369-80. · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The microRNA/miR system might contribute to deregulation of cell homeostasis/disease phenotype. This is the first approach to generate an expression profile of 365 microRNAs in myelodysplastic syndromes (MDS) with normal karyotype (n=12) and distinct cytogenetic aberrations (n=12). In MDS-del(5q), a series of microRNAs not in the 5q-region was increased. MicroRNAs encoded on chromosomes 5, 7 and 8 were not differentially expressed in MDS with del(5q), -7 or +8. Evaluation in a larger cohort could confirm the up-regulation of the miR-1 in MDS. These findings provide evidence that MDS-haematopoiesis is distinct in its microRNA-expression pattern from non-neoplastic cells.
    Leukemia research 09/2010; 34(9):1169-74. · 2.36 Impact Factor
  • American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans; 05/2010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In damaged organs tissue repair and replacement of cells by connective tissue provokes a response of fibroblasts to cellular stress factors such as hypoxia.MicroRNAs (miRNA) are small non-coding RNA molecules which bind to their mRNA targets which eventually lead to repression of translation. Whether the response of fibroblasts to stress factors also involves the miRNA system is largely unknown. By miRNA profiling we identified down-regulation of miRNA-449a/b expression in hypoxic fibroblasts. Specific miRNA inhibitors and mimics showed direct evidence for targeting the serine protease inhibitor (serpin) protein (SERPINE1; plasminogen activator inhibitor-1, PAI-1) by miRNA-449a/b leading to SERPINE1 mRNA and protein up- and down-regulation, respectively. SERPINE1 expression in vivo could be located predominantly in areas of fibrosis and remodeling. Our study offers serious lines of evidence for a novel hypoxia-dependent mechanism involving hypoxia-induced decrease of clustered miRNA-449a/b, hypoxia-induced amplification of concomitant increase of targeted SERPINE1 (PAI-1) and its overexpression in tissues showing a hypoxic environment.
    Journal of Translational Medicine 04/2010; 8:33. · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In primary myelofibrosis (PMF) and essential thrombocythemia (ET) the megakaryocytic lineage characteristically shows aberrant proliferation and maturation in which the regulatory microRNA (miR) system might be involved. Laser-microdissected PMF and ET megakaryocytes were analysed with real-time polymerase chain reaction (PCR) low density arrays comprising 365 microRNAs. The highest megakaryocytic expression levels were observed for miR-223, which is known to be expressed also in granulopoiesis. Cluster analysis revealed a tendency of disease-specific megakaryocytic microRNA expression profiles indicating that a complex shift of microRNA expression appears to be the underlying defect. Increased accumulation of miR-146b was observed in cellular stage PMF (p = 0.0125) but not ET megakaryopoiesis. In conclusion, this is the first microRNA profiling of in situ-derived PMF, ET and normal megakaryocytes.
    Platelets 09/2009; 20(6):391-400. · 2.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated whether, in myelodysplastic syndromes (MDS), aberrant expression of miR-150/miR-221/miR-222 and their designated target mRNA molecules MYB, p27 and c-KIT may be involved in insufficient haematopoiesis. In a series of MDS (n=52), an aberrant increase of miR-150 was found only in MDS with associated del(5q) (n=9; p<0.01). The mRNA expression of transcription factor MYB, the designated target of miR-150, was shown to correlate inversely with the miR-150 level. Acute leukaemia evolving from MDS (n=11) showed significantly decreased levels of miR-221 but not miR-222. We conclude that inhibition of proliferation via over-expressed miR-150 might contribute to myelodysplastic haematopoiesis in MDS-del(5q).
    Leukemia research 08/2009; 34(3):328-34. · 2.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Among Philadelphia chromosome-negative myeloproliferative neoplasms (Ph(-) MPN), essential thrombocythemia (ET) and the prefibrotic phase of primary myelofibrosis (PMF) represent two subtypes with considerable overlap. In this study, histopathological classification of 490 MPN cases was correlated with the allelic burden of JAK2(V617F) and MPL(W515L). Ph(-) MPN entities largely overlap with regard to JAK2(V617F) and MPL(W515L) allele burden, but ET displayed mutant allele burden <50%. PMF with different stages of myelofibrosis all yielded similar JAK2(V617F) allele burden. At initial presentation one-quarter of prefibrotic PMF cases exhibited an allele burden exceeding 50% (38% median JAK2(V617F) alleles, n=102). In ET, its main differential diagnosis, not a single case was found with >40% JAK2(V617F) alleles (median, 24% JAK2(V617F) alleles; n=90; p<0.001). Increase in JAK2(V617F) alleles during follow-up could not be linked to fibrosis or blastic progression but was related to polycythemic transformation in ET. MPL(W515L) was found in 3% of ET and 8% of PMF, with a significantly higher percentage of mutated alleles in fibrotic than prefibrotic PMF (median, 78% MPL(W515L) alleles; p<0.05). Histopathological categories ET and prefibrotic PMF correlate with significant differences in mutant allelic burden of JAK2(V617F), but not of MPL(W515L) which, by contrast to JAK2(V617F), shows a higher percentage of mutated alleles in fibrotic than in prefibrotic cases. Thus, for Ph(-) MPN in which ET and prefibrotic PMF represent the most probable diagnoses, a JAK2(V617F) allele burden >50% favors a diagnosis of prefibrotic PMF.
    Experimental hematology 08/2009; 37(10):1186-1193.e7. · 3.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by remodelling of the bone marrow, including progressive myelofibrosis and exaggerated angiogenesis. Advanced PMF frequently shows a full-blown fibre meshwork, which avoids aspiration of cells, and the expression profile of genes related to stroma pathology at this stage remains largely undetermined. We investigated bone marrow core biopsies in PMF showing various degrees of myelofibrosis by custom-made low density arrays (LDA) representing target genes with designated roles in synthesis of extracellular matrix, matrix remodelling, cellular adhesion and motility. Among a set of 11 genes up-regulated in advanced stages of PMF (P < or = 0.01) three candidates, PTK2 protein tyrosine kinase 2 (PTK2), transforming growth factor beta type II receptor (TGFBR2) and motility-related protein-1 (CD9 molecule, CD9), were investigated in more detail. PTK2, TGFBR2 and CD9 were significantly overexpressed in larger series of advanced PMF stages (P < or = 0.01 respectively). Endothelial cells of the increased microvessel network in PMF could be identified as a predominant source for PTK2, TGFBR2 and CD9. CD9 also strongly identified activated fibroblasts in advanced myelofibrosis. We conclude that PTK2, TGFBR2 and CD9 represent new target molecules involved in bone marrow remodelling of PMF and warrant further investigation for potential targeted therapy.
    British Journal of Haematology 07/2009; 146(5):510-20. · 4.94 Impact Factor
  • Source
    British Journal of Haematology 04/2009; 145(5):673-5. · 4.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lck/yes-related novel (Lyn) tyrosine kinase overexpression has been suggested to be important for leukaemic cell growth making it an attractive target for therapy. By contrast, Lyn deficiency was shown to be responsible for a phenotype resembling myeloproliferative neoplasm (MPN) in mice. We aimed to shed more light on Lyn's role in haematological neoplasm and systematically investigated Lyn expression in MPN, acute and chronic leukaemia subtypes (n = 236). On top, B-cell chronic lymphocytic leukaemia (B-CLL) and chronic myeloid leukaemia significantly overexpressed Lyn when compared to de novo acute lymphoblastic leukaemia, de novo acute myeloid leukaemia (AML) and Philadelphia-chromosome-negative myeloproliferative neoplasms (p < 0.001). Most of acute leukaemia subtypes showed a notable down-regulation of Lyn mRNA but anyhow individual cases were labelled for the active form of Lyn protein. Intriguingly, secondary AML evolved in myelodysplastic syndromes revealed almost undetectable Lyn. Overexpression of Lyn in B-CLL was associated with a significant down-regulation of microRNA-337-5p suggesting that aberrant expression of this particular microRNA could be involved in post-transcriptional control of Lyn mRNA fate. We conclude that tyrosine kinase Lyn contributes to the malignant phenotype in certain leukaemia subtypes and therefore attracts targeted therapy.
    Annals of Hematology 03/2009; 88(11):1059-67. · 2.40 Impact Factor

Publication Stats

873 Citations
332.76 Total Impact Points

Institutions

  • 2000–2011
    • Hannover Medical School
      • Institute for Pathology
      Hannover, Lower Saxony, Germany
  • 2006
    • University of Veterinary Medicine Hannover
      Hanover, Lower Saxony, Germany
  • 2004
    • Hochschule Hannover
      Hanover, Lower Saxony, Germany
  • 2002
    • University of Southampton
      Southampton, England, United Kingdom