P. T. O'Brien

Keele University, Newcastle-under-Lyme, England, United Kingdom

Are you P. T. O'Brien?

Claim your profile

Publications (547)1658.71 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The magnetar model has been proposed to explain the apparent energy injection in the X-ray light curves of short gamma-ray bursts (SGRBs), but its implications across the full broadband spectrum are not well explored. We investigate the broadband modelling of four SGRBs with evidence for energy injection in their X-ray light curves, applying a physically motivated model in which a newly-formed magnetar injects energy into a forward shock as it loses angular momentum along open field lines. By performing an order of magnitude search for the underlying physical parameters in the blast wave, we constrain the characteristic break frequencies of the synchrotron spectrum against their manifestations in the available multi-wavelength observations for each burst. The application of the magnetar energy injection profile restricts the succesful matches to a limited family of models that are self-consistent within the magnetic dipole spin-down framework. Because of this, we are able to produce synthetic light curves that describe how the radio signatures of these SGRBs ought to have looked at a variety of frequencies, given the restrictions imposed by the available data. We discuss the detectability of these signatures in the context of present day and near future radio telescopes. Our results show that previous observations were not deep enough to place meaningful constraints on the model, but that both ALMA and the upgraded VLA are now sensitive enough to detect the radio signature within two weeks of trigger in most SGRBs, assuming our sample is representative of the population as a whole. We also find that the upcoming Square Kilometer Array will be sensitive to depths greater than those of our lower limit predictions.
    11/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the Microchannel X-ray Telescope, a new light and compact focussing telescope that will be flying on the Sino-French SVOM mission dedicated to Gamma-Ray Burst science. The MXT design is based on the coupling of square pore micro-channel plates with a low noise pnCCD. MXT will provide an effective area of about 50 cmsq, and its point spread function is expected to be better than 3.7 arc min (FWHM) on axis. The estimated sensitivity is adequate to detect all the afterglows of the SVOM GRBs, and to localize them to better then 60 arc sec after five minutes of observation.
    07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An intrinsic correlation has been identified between the luminosity and duration of plateaus in the X-ray afterglows of Gamma-Ray Bursts (GRBs; Dainotti et al. 2008), suggesting a central engine origin. The magnetar central engine model predicts an observable plateau phase, with plateau durations and luminosities being determined by the magnetic fields and spin periods of the newly formed magnetar. This paper analytically shows that the magnetar central engine model can explain, within the 1$\sigma$ uncertainties, the correlation between plateau luminosity and duration. The observed scatter in the correlation most likely originates in the spread of initial spin periods of the newly formed magnetar and provides an estimate of the maximum spin period of ~35 ms (assuming a constant mass, efficiency and beaming across the GRB sample). Additionally, by combining the observed data and simulations, we show that the magnetar emission is most likely narrowly beamed and has $\lesssim$20% efficiency in conversion of rotational energy from the magnetar into the observed plateau luminosity. The beaming angles and efficiencies obtained by this method are fully consistent with both predicted and observed values. We find that Short GRBs and Short GRBs with Extended Emission lie on the same correlation but are statistically inconsistent with being drawn from the same distribution as Long GRBs, this is consistent with them having a wider beaming angle than Long GRBs.
    Monthly Notices of the Royal Astronomical Society 07/2014; 443(2). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The long gamma-ray burst (GRB) 100621A, at the time the brightest X-ray transient ever detected by Swift-XRT in the $0.3\textrm{--}10$ keV range, has been observed with the H.E.S.S. imaging air Cherenkov telescope array, sensitive to gamma radiation in the very-high-energy (VHE, $>100$ GeV) regime. Due to its relatively small redshift of $z\sim0.5$, the favourable position in the southern sky and the relatively short follow-up time ($<700 \rm{s}$ after the satellite trigger) of the H.E.S.S. observations, this GRB could be within the sensitivity reach of the H.E.S.S. instrument. The analysis of the H.E.S.S. data shows no indication of emission and yields an integral flux upper limit above $\sim$380 GeV of $4.2\times10^{-12} \rm cm^{-2}s^{-1}$ (95 % confidence level), assuming a simple Band function extension model. A comparison to a spectral-temporal model, normalised to the prompt flux at sub-MeV energies, constraints the existence of a temporally extended and strong additional hard power law, as has been observed in the other bright X-ray GRB 130427A. A comparison between the H.E.S.S. upper limit and the contemporaneous energy output in X-rays constrains the ratio between the X-ray and VHE gamma-ray fluxes to be greater than 0.4. This value is an important quantity for modelling the afterglow and can constrain leptonic emission scenarios, where leptons are responsible for the X-ray emission and might produce VHE gamma rays.
    05/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of the jet when measured minutes after the burst, and it probes the geometric properties of the jet and the ambient medium when measured hours to days after the burst. High values of optical polarization detected minutes after the burst of GRB 120308A indicate the presence of large-scale ordered magnetic fields originating from the central engine (the power source of the GRB). Theoretical models predict low degrees of linear polarization and no circular polarization at late times, when the energy in the original ejecta is quickly transferred to the ambient medium and propagates farther into the medium as a blast wave. Here we report the detection of circularly polarized light in the afterglow of GRB 121024A, measured 0.15 days after the burst. We show that the circular polarization is intrinsic to the afterglow and unlikely to be produced by dust scattering or plasma propagation effects. A possible explanation is to invoke anisotropic (rather than the commonly assumed isotropic) electron pitch-angle distributions, and we suggest that new models are required to produce the complex microphysics of realistic shocks in relativistic jets.
    Nature 04/2014; · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The first gravitational-wave (GW) observations will greatly benefit, or even depend on, the detection of coincident electromagnetic counterparts. These counterparts will similarly enhance the scientific impact of later detections. Electromagnetic follow-ups can be, nevertheless, challenging for GW event candidates with poorly reconstructed directions. Localization can be inefficient in several important scenarios: (i) in the early advanced detector era, only the two LIGO observatories will be operating; (ii) later, even with more observatories, the detectors' sensitivity will probably be non-uniform; (iii) the first events, as well as a significant fraction of later events, will likely occur near the detectors' horizon distance, where they are only marginally detectable, having low signal-to-noise ratios. In these scenarios, the precision of localization can be severely limited. Follow-up observations will need to cover hundreds to thousands of square degrees of the sky over a limited period of time, reducing the list of suitable follow-up telescopes or telescope networks. Compact binary mergers, the most anticipated sources for the first GW observations, will be detectable via advanced LIGO/Virgo from hundreds of megaparsecs, setting the scale to the sensitivity required from follow-up observatories. We demonstrate that the Cherenkov Telescope Array will be capable of following up GW event candidates over the required large sky area with sufficient sensitivity to detect short gamma-ray bursts, which are thought to originate from compact binary mergers, out to the horizon distance of advanced LIGO/Virgo. CTA can therefore be invaluable starting with the first multimessenger detections, even with poorly reconstructed GW source directions. This scenario also provides a further scientific incentive for GW observatories to further decrease the delay of their event reconstruction.
    Monthly Notices of the Royal Astronomical Society 03/2014; 443(1). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GRB~130925A was an unusual GRB, consisting of 3 distinct episodes of high-energy emission spanning $\sim$20 ks, making it a member of the proposed category of `ultra-long' bursts. It was also unusual in that its late-time X-ray emission observed by \swift\ was very soft, and showed a strong hard-to-soft spectral evolution with time. This evolution, rarely seen in GRB afterglows, can be well modelled as the dust-scattered echo of the prompt emission, with stringent limits on the contribution from the normal afterglow (i.e. external shock) emission. We consider and reject the possibility that GRB~130925A was some form of tidal disruption event, and instead show that if the circumburst density around GRB~130925A is low, the long duration of the burst and faint external shock emission are naturally explained. Indeed, we suggest that the ultra-long GRBs as a class can be explained as those with low circumburst densities, such that the deceleration time (at which point the material ejected from the nascent black hole is decelerated by the circumburst medium) is $\sim$20 ks, as opposed to a few hundred seconds for the normal long GRBs.
    Monthly Notices of the Royal Astronomical Society 03/2014; 444(1). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present evidence for the rapid variability of the high velocity iron K-shell absorption in the nearby ($z=0.184$) quasar PDS456. From a recent long Suzaku observation in 2013 ($\sim1$Ms effective duration) we find that the the equivalent width of iron K absorption increases by a factor of $\sim5$ during the observation, increasing from $<105$eV within the first 100ks of the observation, towards a maximum depth of $\sim500$eV near the end. The implied outflow velocity of $\sim0.25$c is consistent with that claimed from earlier (2007, 2011) Suzaku observations. The absorption varies on time-scales as short as $\sim1$ week. We show that this variability can be equally well attributed to either (i) an increase in column density, plausibly associated with a clumpy time-variable outflow, or (ii) the decreasing ionization of a smooth homogeneous outflow which is in photo-ionization equilibrium with the local photon field. The variability allows a direct measure of absorber location, which is constrained to within $r=200-3500$$\rm{r_{g}}$ of the black hole. Even in the most conservative case the kinetic power of the outflow is $\gtrsim6\%$ of the Eddington luminosity, with a mass outflow rate in excess of $\sim40\%$ of the Eddington accretion rate. The wind momentum rate is directly equivalent to the Eddington momentum rate which suggests that the flow may have been accelerated by continuum-scattering during an episode of Eddington-limited accretion.
    The Astrophysical Journal 02/2014; 784(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A significant proportion ($\sim30\%$) of the short-duration gamma-ray bursts (SGRBs) localised by Swift have no detected host galaxy coincident with the burst location to deep limits, and also no high-likelihood association with proximate galaxies on the sky. These SGRBs may represent a population at moderately high redshifts ($z\gtrsim1$), for which the hosts are faint, or a population where the progenitor has been kicked far from its host or is sited in an outlying globular cluster. We consider the afterglow and host observations of three 'hostless' bursts (GRBs 090305A, 091109B and 111020A), coupled with a new observational diagnostic to aid the association of SGRBs with putative host galaxies to investigate this issue. Considering the well localised SGRB sample, 7/25 SGRBs can be classified as 'hostless' by our diagnostic. Statistically, however, the proximity of these seven SGRBs to nearby galaxies is higher than is seen for random positions on the sky. This suggests that the majority of 'hostless' SGRBs have likely been kicked from proximate galaxies at moderate redshift. Though this result still suggests only a small proportion of SGRBs will be within the AdLIGO horizon for NS-NS or NS-BH inspiral detection ($z\sim0.1$), in the particular case of GRB 111020A a plausible host candidate is at $z=0.02$.
    Monthly Notices of the Royal Astronomical Society 02/2014; 437(2). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: At low redshift, a handful of gamma-ray bursts (GRBs) have been discovered with peak luminosities ($L_{\rm iso} < 10^{48.5}~\rm{erg\,s}^{-1}$) substantially lower than the average of the more distant ones ($L_{\rm iso} > 10^{49.5}~\rm{erg\,s}^{-1}$). The properties of several low-luminosity (low-$L$) GRBs indicate that they can be due to shock break-out, as opposed to the emission from ultrarelativistic jets. Owing to this, it is highly debated how both populations are connected, and whether there is a continuum between them. The burst at redshift $z=0.283$ from 2012 April 22 is one of the very few examples of intermediate-$L$ GRBs with a $\gamma$-ray luminosity of $L\sim10^{48.9}~\rm{erg\,s}^{-1}$ that have been detected up to now. Together with the robust detection of its accompanying supernova SN 2012bz, it has the potential to answer important questions on the origin of low- and high-$L$ GRBs and the GRB-SN connection. We carried out a spectroscopy campaign using medium- and low-resolution spectrographs at 6--10-m class telescopes, covering the time span of 37.3 days, and a multi-wavelength imaging campaign from radio to X-ray energies over a duration of $\sim270$ days. Furthermore, we used a tuneable filter centred at H$\alpha$ to map star formation in the host galaxy and the surrounding galaxies. We used these data to extract and model the properties of different radiation components and incorporate spectral-energy-distribution fitting techniques to extract the properties of the host galaxy. Modelling the light curve and spectral energy distribution from the radio to the X-rays revealed the blast-wave to expand with an initial Lorentz factor of $\Gamma_0\sim60$, low for a high-$L$ GRB, and that the afterglow had an exceptional low peak luminosity-density of $\lesssim2\times10^{30}~\rm{erg\,s}^{-1}\,\rm{Hz}^{-1}$ in the sub-mm. [Abridged]
    01/2014;
  • 11/2013;
  • 11/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-duration Gamma-Ray Bursts (GRBs) are an extremely rare outcome of the collapse of massive stars, and are typically found in the distant Universe. Because of its intrinsic luminosity (L ∼ 3 × 10(53) erg s(-1)) and its relative proximity (z = 0.34), GRB 130427A was a unique event that reached the highest fluence observed in the γ-ray band. Here we present a comprehensive multiwavelength view of GRB 130427A with Swift, the 2-m Liverpool and Faulkes telescopes and by other ground-based facilities, highlighting the evolution of the burst emission from the prompt to the afterglow phase. The properties of GRB 130427A are similar to those of the most luminous, high-redshift GRBs, suggesting that a common central engine is responsible for producing GRBs in both the contemporary and the early Universe and over the full range of GRB isotropic energies.
    Science 11/2013; · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use high--quality, multi-band observations of Swift GRB120404A, from gamma-ray to radio frequencies, together with the new hydrodynamics code of van Eerten et al. (2012) to test the standard synchrotron shock model. The evolution of the radio and optical afterglow, with its prominent optical rebrightening at t_rest 260-2600 s, is remarkably well modelled by a decelerating jet viewed close to the jet edge, combined with some early re-energization of the shock. We thus constrain the geometry of the jet with half-opening and viewing angles of 23 and 21 deg respectively and suggest that wide jets viewed off-axis are more common in GRBs than previously thought. We also derive the fireball microphysics parameters epsilon_B=2.4e-4 and epsilon_e=9.3e-2 and a circumburst density of n=240 cm^-3. The ability to self-consistently model the microphysics parameters and jet geometry in this way offers an alternative to trying to identify elusive canonical jet breaks at late times. The mismatch between the observed and model-predicted X-ray fluxes is explained by the local rather than the global cooling approximation in the synchrotron radiation model, constraining the microphysics of particle acceleration taking place in a relativistic shock and, in turn, emphasising the need for a more realistic treatment of cooling in future developments of theoretical models. Finally, our interpretation of the optical peak as due to the passage of the forward shock synchrotron frequency highlights the importance of high quality multi-band data to prevent some optical peaks from being erroneously attributed to the onset of fireball deceleration.
    Monthly Notices of the Royal Astronomical Society 11/2013; · 5.52 Impact Factor
  • Source
    B. P. Gompertz, P. T. O'Brien, G. A. Wynn
    [Show abstract] [Hide abstract]
    ABSTRACT: Extended emission (EE) is a high-energy, early time rebrightening sometimes seen in the light curves of short gamma-ray bursts (GRBs). We present the first contiguous fits to the EE tail and the later X-ray plateau, unified within a single model. Our central engine is a magnetar surrounded by a fall-back accretion disc, formed by either the merger of two compact objects or the accretion-induced collapse of a white dwarf. During the EE phase, material is accelerated to super-Keplarian velocities and ejected from the system by the rapidly rotating ($P \approx 1 - 10$ ms) and very strong ($10^{15}$ G) magnetic field in a process known as magnetic propellering. The X-ray plateau is modelled as magnetic dipole spin-down emission. We first explore the range of GRB phenomena that the propeller could potentially reproduce, using a series of template light curves to devise a classification scheme based on phenomology. We then obtain fits to the light curves of 9 GRBs with EE, simultaneously fitting both the propeller and the magnetic dipole spin-down and finding typical disc masses of a few $10^{-3}$ $M_{\odot}$ to a few $10^{-2}$ $M_{\odot}$. This is done for ballistic, viscous disc and exponential accretion rates. We find that the conversion efficiency from kinetic energy to EM emission for propellered material needs to be $\gtrsim 10\%$ and that the best fitting results come from an exponential accretion profile.
    Monthly Notices of the Royal Astronomical Society 11/2013; · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a comparison of two Suzaku X-ray observations of the nearby (z=0.184), luminous ($L_{bol} \sim 10^{47}$ erg s$^{-1}$) type I quasar, PDS456. A new 125ks Suzaku observation in 2011 caught the quasar during a period of low X-ray flux and with a hard X-ray spectrum, in contrast to a previous 190ks Suzaku observation in 2007 when the quasar appeared brighter and had a steep ($\Gamma>2$) X-ray spectrum. The 2011 X-ray spectrum contains a pronounced trough near 9\,keV in the quasar rest frame, which can be modeled with blue-shifted iron K-shell absorption, most likely from the He and H-like transitions of iron. The absorption trough is observed at a similar rest-frame energy as in the earlier 2007 observation, which appears to confirm the existence of a persistent high velocity wind in PDS 456, at an outflow velocity of $0.25-0.30$c. The spectral variability between 2007 and 2011 can be accounted for by variations in a partial covering absorber, increasing in covering fraction from the brighter 2007 observation to the hard and faint 2011 observation. Overall the low flux 2011 observation can be explained if PDS 456 is observed at relatively low inclination angles through a Compton thick wind, originating from the accretion disk, which significantly attenuates the X-ray flux from the quasar.
    The Astrophysical Journal 11/2013; 780(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a broadband study of gamma-ray burst (GRB) 091024A within the context of other ultra-long-duration GRBs. An unusually long burst detected by Konus-Wind, Swift, and Fermi, GRB 091024A has prompt emission episodes covering ~1300 s, accompanied by bright and highly structured optical emission captured by various rapid-response facilities, including the 2-m autonomous robotic Faulkes North and Liverpool Telescopes, KAIT, S-LOTIS, and SRO. We also observed the burst with 8- and 10-m class telescopes and determine the redshift to be z = 1.0924 \pm 0.0004. We find no correlation between the optical and gamma-ray peaks and interpret the optical light curve as being of external origin, caused by the reverse and forward shock of a highly magnetized jet (R_B ~ 100-200). Low-level emission is detected throughout the near-background quiescent period between the first two emission episodes of the Konus-Wind data, suggesting continued central-engine activity; we discuss the implications of this ongoing emission and its impact on the afterglow evolution and predictions. We summarize the varied sample of historical GRBs with exceptionally long durations in gamma-rays (>~ 1000 s) and discuss the likelihood of these events being from a separate population; we suggest ultra-long GRBs represent the tail of the duration distribution of the long GRB population.
    The Astrophysical Journal 11/2013; 778(1):54. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Advanced Telescope for High-energy Astrophysics (Athena+) is being proposed to ESA as the L2 mission (for a launch in 2028) and is specifically designed to answer two of the most pressing questions for astrophysics in the forthcoming decade: How did ordinary matter assemble into the large scale structures we see today? and how do black holes grow and shape the Universe? For addressing these two issues, Athena+ will provide transformational capabilities in terms of angular resolution, effective area, spectral resolution, grasp, that will make it the most powerful X-ray observatory ever flown. Such an observatory, when opened to the astronomical community, will be used for virtually all classes of astrophysical objects, from high-z gamma-ray bursts to the closest planets in our solar neighborhood. In this paper, we briefly review the core science objectives of Athena+, present the science requirements and the foreseen implementation of the mission, and illustrate its transformational capabilities compared to existing facilities.
    10/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The majority of Swift gamma-ray bursts (GRBs) observed at z > 6 have prompt durations of T90 < 30s, which, at first sight, is surprising given that cosmological time-dilation means this corresponds to < 5s in their rest frames. We have tested whether these high-redshift GRBs are consistent with being drawn from the same population as those observed at low-redshift by comparing them to an artificially red-shifted sample of 114 z < 4 bursts. This is accomplished using two methods to produce realistic high-z simulations of light curves based on the observed characteristics of the low-z sample. In Method 1 we use the Swift/BAT data directly, taking the photons detected in the harder bands to predict what would be seen in the softest energy band if the burst were seen at higher-z. In Method 2 we fit the light curves with a model, and use that to extrapolate the expected behaviour over the whole BAT energy range at any redshift. Based on the results of Method 2, a K-S test of their durations finds a ~1% probability that the high-z GRB sample is drawn from the same population as the bright low-z sample. Although apparently marginally significant, we must bear in mind that this test was partially a posteriori, since the rest-frame short durations of several high-z bursts motivated the study in the first instance.
    Monthly Notices of the Royal Astronomical Society 09/2013; 436(4). · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Due to their highly luminous nature, gamma-ray bursts (GRBs) are useful tools in studying the early Universe (up to z = 10). We consider whether the available subset of Swift high redshift GRBs are unusual when compared to analogous simulations of a bright low redshift sample. By simulating data from the Burst Alert Telescope (BAT; Barthelmy et al. 2005) the light curves of these bright bursts are obtained over an extensive range of redshifts, revealing complicated evolution in properties of the prompt emission such as T90.
    08/2013;

Publication Stats

5k Citations
1,658.71 Total Impact Points

Institutions

  • 2014
    • Keele University
      • School of Physical and Geographical Sciences
      Newcastle-under-Lyme, England, United Kingdom
  • 1998–2014
    • University of Leicester
      • Department of Physics and Astronomy
      Leiscester, England, United Kingdom
  • 1995–2011
    • University College London
      • Department of Space and Climate Physics
      Londinium, England, United Kingdom
    • Space Telescope Science Institute
      Baltimore, Maryland, United States
  • 2010
    • Hebrew University of Jerusalem
      Yerushalayim, Jerusalem District, Israel
    • Università degli Studi di Palermo
      Palermo, Sicily, Italy
  • 2005–2008
    • Pennsylvania State University
      • Department of Astronomy and Astrophysics
      University Park, MD, United States
    • Università degli Studi di Milano-Bicocca
      • Department of Physics
      Monza, Lombardy, Italy
    • Johns Hopkins University
      • Department of Physics and Astronomy
      Baltimore, MD, United States
  • 2007
    • Stanford University
      Palo Alto, California, United States
    • The University of Warwick
      • Department of Physics
      Coventry, England, United Kingdom
  • 2006
    • Universities Space Research Association
      Houston, Texas, United States
    • University of North Carolina at Chapel Hill
      • Department of Physics and Astronomy
      Chapel Hill, NC, United States
  • 2004–2006
    • Leicester College
      Leiscester, England, United Kingdom
  • 2000–2006
    • The Astronomical Observatory of Brera
      Merate, Lombardy, Italy
  • 1990–2005
    • NASA
      Washington, West Virginia, United States
  • 1994
    • Tel Aviv University
      Tell Afif, Tel Aviv, Israel