Ming Ding

Zhejiang Sci-Tech University, Hang-hsien, Zhejiang Sheng, China

Are you Ming Ding?

Claim your profile

Publications (17)33.54 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Colon cancer is one of the most common malignances. In vitro and in vivo study show that retinoic acids inhibit a wide variety of cancer cells but the molecular mechanism of their anti-tumor effects are not yet fully understood. All-trans retinoic acid (ATRA), an isomer of retinoic acid, can inhibit the proliferation of HCT-15 human colon cancer cell line. A proteomic analysis was performed using HCT-15 treated with ATRA to further elucidate the retinoic acid signaling pathway and its anti-tumor effect mechanism. MTT results showed that the growth of HCT-15 cells were significantly inhibited by ATRA. The alkaline phosphatase activity assay showed that ATRA failed to induce the differentiation of HCT-15. The DNA ladder detection showed that ATRA induced apoptosis in HCT-15. Two-dimensional gel electrophoresis coupled with MALDI-TOF/TOF mass spectrometry identified 13 differentially expressed proteins in HCT-15 cells after all-trans retinoic acid treatment. Among the identified differentially expressed proteins, there were four scaffold proteins (YWHAE, SFN, YWHAB, and YWHAZ), two ubiquitin modification related proteins (ISG-15 and UBE2N), two translational initiation factors (EIF1AX and EIF3K), two cytoskeleton related proteins (EZRI and CNN3), two protein-modification related proteins (TXNDC17 and PIMT), and one enzyme related to phospholipid metabolism (PSP). Both EZRI and UBE2N were rendered to western-blot validation and the results were consistent with the two-dimension electrophoresis analysis. In this study, the differentially expressed proteins in HCT-15 treated by ATRA were identified, which will assist the further elucidation of the anti-tumor mechanism of retinoic acids.
    Protein and Peptide Letters 06/2012; · 1.99 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The endoglucanase, EGA, from Bacillus sp. AC-1 comprises a glycosyl hydrolase family-9 catalytic module (CM9) and a family-3 carbohydrate-binding module (CBM3). Seven aromatic residues were subjected to site-directed mutagenesis in both CBM3 and EGA to investigate their roles in enzyme thermostability. The complexes generated by mixing CBMY527G, CBMW532A, or CBMF592G with CM9 each lost their activities after 15 min at 45°C, while the wild-type complex retained >70% activity after 2 h. The mutants EGAY527G, EGAW532A, and EGAF592G showed little activity after 15 min at 60°C, whereas EGA remained 70% active after 2 h. Thus the residues Tyr(527), Trp(532), and Phe(592) contribute not only to CBM3-mediated stability of CM9 but also to EGA thermostability suggesting that hydrophobic interaction between the two modules, independent of covalent linkages, is important for enzyme thermostability.
    Biotechnology Letters 07/2011; 33(11):2209-16. · 1.85 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Three endoglucanase cDNAs, eg65a, eg65b, and eg65c, were cloned from the mollusk Ampullaria crossean in previous work. To characterize the full-length enzymes as well as their individual functional modules via heterologous expression analysis, the three full-length putative endoglucanases (rEG65a, rEG65b, and rEG65c) and the corresponding catalytic modules (EG65a-CM, EG65b-CM, and EG65c-CM) were expressed in Pichia pastoris GS115, and the three corresponding carbohydrate-binding modules (EG65a-CBM, EG65b-CBM, and EG65c-CBM) were expressed in Escherichia coli BL21 (DE3). The properties of recombinant rEG65b, EG65a-CM, EG65b-CM, and EG65c-CM were characterized. Binding assays of CBMs with insoluble polysaccharides indicated that both EG65b-CBM and EG65c-CBM bound to phosphoric-acid swollen cellulose (PASC), Avicel, and oat-spelt xylan, while EG65a-CBM did not. The relative equilibrium constants (K(r)) of EG65b-CBM and EG65c-CBM were determined by absorption isotherm measurements. In this study, the CBMs of animal cellulases were expressed and characterized for the first time.
    Bioscience Biotechnology and Biochemistry 02/2011; 75(2):240-6. · 1.27 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: In this study, we confirmed that at least three endo-β-1,4-glucanases existed in the digestive juice of the giant snail, Achatina fulica ferussac, by Congo red staining assay. One of these enzymes, a novel endo-β-1,4-glucanase (AfEG22), was purified 29.5-fold by gel filtration, anion exchange, and hydrophobic interaction chromatography. The carboxymethyl cellulose (CMC) hydrolytic activity of the purified enzyme was 12.3 U/mg protein. The molecular mass of AfEG22 was 22081 Da determined by MALDI-TOF. N-terminal amino acid sequencing revealed a sequence of EQRCTNQGGILKYYNT, which did not have significant homology with any proteins in BLAST database. The optimal pH and temperature for hydrolytic activity toward CMC were pH 4.0 and 50°C, respectively. AfEG22 was stable between pH 3.0 and pH 12.0 when incubated at 4°C for 3 h or at 37°C for 1 h. The enzyme remained more than 80% activity between pH 4.5 and pH 7.0 after incubation at 50°C for 1 h. AfEG22 possessed excellent thermostability as more than 70% activity was remained after incubation at 60°C for 3 h. Substrate specific analysis revealed that AfEG22 was a typical endo-β-1,4-glucanase. This is the first time to report a novel endo-β-1,4-glucanase with high stability from the digestive juice of A. fulica.
    Acta Biochimica et Biophysica Sinica 10/2010; 42(10):729-34. · 1.81 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies. Early diagnosis is critical for guiding the therapeutic management of ESCC. It is imperative to find more effective biomarkers of ESCC. To identify novel biomarkers for esophageal squamous cell carcinoma (ESCC), specimens from 10 patients with ESCC were subjected to a comparative proteomic analysis. The proteomic patterns of ESCC samples and normal esophageal epithelial tissues (NEETs) were compared using two-dimensional gel electrophoresis. And differentially expressed proteins were identified using MALDI-TOF-MS/MS. For further identification of protein in selected spot, western blotting and immunohistochemistry were employed. Twelve proteins were up-regulated and fifteen proteins were down-regulated in the ESCC samples compared with the NEET samples. Up-regulation of galectin-7 was further confirmed by western blotting and immunohistochemistry. Furthermore, immunohistochemical staining of galectin-7 was performed on a tissue microarray containing ESCC samples (n = 50) and NEET samples (n = 10). The expression levels of galectin-7 were markedly higher in the ESCC samples than in the NEET samples (P = 0.012). In addition, tissue microarray analysis also showed that the expression level of galectin-7 was related to the differentiation of ESCC. The present proteomics analysis revealed that galectin-7 was highly expressed in ESCC tissues. The alteration in the expression of galectin-7 was confirmed using a tissue microarray. These findings suggest that galectin-7 could be used as a potential biomarker for ESCC.
    BMC Cancer 01/2010; 10:290. · 3.33 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A novel endo-beta-1,4-glucanase, AC-EG65, with a molecular mass of 65 kDa, was purified from the gastric juice of the mollusc, Ampullaria crossean, by ammonium sulfate fractionation, anion exchange, gel filtration, hydrophobic interaction and a second round of anion exchange chromatography. AC-EG65 showed specific carboxymethyl cellulose hydrolytic activity of 13.3 U/mg protein and the optimal pH and temperature of the activity were pH 5.5-6.5 and 50-55 degrees C, respectively. From the cDNA library of A. crossean stomach tissue, eight endo-beta-1,4-glucanase genes with high similarity were successfully cloned based on the partial amino acid sequences of AC-EG65 and were classified into 3 groups: eg65-a, eg65-b, and eg65-c. The open reading frames of the groups eg65-a, eg65-b, and eg65-c were 2142 bp, 2171 bp, and 2169 bp in length, encoding 713, 723 and 722 amino acids, respectively. The eight deduced proteins consisted of a family II carbohydrate-binding module (CBM2) and a glycosyl hydrolase family 9 (GHF9) catalytic domain. More than 98% amino acid identities were shared within the same group and more than 87% sequence identities among the groups. The endogenous origins of these EGase genes were supported by PCR amplification using ovary genomic DNA as template.
    Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology 04/2009; 153(2):149-56. · 1.61 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: D-xylose is a necessary sugar for animals. The xylanase from a mollusk, Ampullaria crossean, was previously reported by our laboratory. This xylanase can degrade the xylan into D-xylose. But there is still a gap in our knowledge on its metabolic pathway. The question is how does the xylose enter the pentose pathway? With the help of genomic databases and bioinformatic tools, we found that some animals, such as bacteria, have a highly conserved D-xylose isomerase (EC 5.3.1.5). The xylose isomerase from a sea squirt, Ciona intestinali, was heterogeneously expressed in Escherichia coli and purified to confirm its function. The recombinant enzyme had good thermal stability in the presence of Mg(2+). At the optimum temperature and optimum pH environment, its specific activity on D-xylose was 0.331 micromol/mg/min. This enzyme exists broadly in many animals, but it disappeared in the genome of Amphibia-like Xenopus laevis. Its sequence was highly conserved. The xylose isomerases from animals are very interesting proteins for the study of evolution.
    Acta Biochimica et Biophysica Sinica 03/2009; 41(2):116-22. · 1.81 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: A full-length EGXA enzyme from a mollusk, Ampullaria crossean, was cloned into pFastBac vector and then heterogeneously expressed in insect Tn5 cells. Its natural N-terminal signal peptide worked well in the insect Tn5 cells. The recombinant EGXA was a 63 kDa protein and had active endo-beta-1,4-glucanase (EC 3.2.1.4) and endo-beta-1,4-xylanase (EC 3.2.1.8). The specific activity of endo-beta-1,4-xylanase was higher than in the EGX, which was purified from the stomach tissues of Ampullaria crossen. The N-terminal cellulose-binding domain of EGXA made it bind to cellulose and xylan more efficiently. This cellulose-binding domain also increased the thermal stability of this recombinant enzyme and decreased the recombinant EGXA's specific activities on p-nitrophenyl-beta-D-cellobioside and sodium carboxymethyl cellulose.
    Acta Biochimica et Biophysica Sinica 12/2008; 40(11):949-54. · 1.81 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Two endo-beta-1,4-glucanase cDNAs, eg27I and eg27II, from the mollusc Ampullaria crossean were expressed in Pichia pastoris cells. The secreted His6-tagged proteins were purified in a single chromatography step. The purified recombinant EG27I and EG27II showed enzymatic activity on carboxylmethyl cellulose sodium salt at 15.31 U/mg and 12.40 U/mg, respectively. The optimum pH levels of the recombinant EG27I and EG27II were 5.5 and 5.5-6.0, respectively, and the optimum temperatures were 50 degrees C and 50 degrees C-55 degrees C, respectively. The pH stability study revealed that both EG27I and EG27II showed their highest stability at pH 8.0. Analysis of their thermostability indicated that both EG27I and EG27II were relatively stable up to 40 degrees C. Site-directed mutagenesis of Asp43 and Asp153 of both EG27I and EG27II showed that the two Asp residues are critical for the enzymatic activity.
    Acta Biochimica et Biophysica Sinica 06/2008; 40(5):419-25. · 1.81 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Cellulase genes have been reported not only from fungi, bacteria and plant, but also from some invertebrate animals. Here, two cellulase (endo-beta-1,4-glucanase, EC 3.2.1.4) genes, eg27I and eg27II, were cloned from the freshwater snail Ampullaria crossean cDNA using degenerate primers. The nucleotide sequences of the two genes shared 94.5% identity. The open reading frames of both genes consisted of 588 bp, encoding 195 amino acids. Both EG27I and EG27II belong to the glycoside hydrolase family 45, and each lacks a carbohydrate-binding module. The presence of introns demonstrated a eukaryotic origin of the EG27 gene, and, in addition, successful cloning of EG27 cDNA supported endogenous production of EG27 cellulase by Ampullaria crossean. Investigation of the EG27 cDNA from A. crossean will provide further information on GHF45 cellulases.
    Journal of Comparative Physiology B 03/2008; 178(2):209-15. · 2.02 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Two endo-β-1,4-glucanase cDNAs, eg27I and eg27II, from the mollusc Ampullaria crossean were expressed in Pichia pastoris cells. The secreted His6-tagged proteins were purified in a single chromatography step. The purified recombinant EG27I and EG27II showed enzymatic activity on carboxylmethyl cellulose sodium salt at 15.31 U/mg and 12.40 U/mg, respectively. The optimum pH levels of the recombinant EG27I and EG27II were 5.5 and 5.5−6.0, respectively, and the optimum temperatures were 50 ºC and 50 ºC−55 ºC, respectively. The pH stability study revealed that both EG27I and EG27II showed their highest stability at pH 8.0. Analysis of their thermostability indicated that both EG27I and EG27II were relatively stable up to 40 ºC. Site- directed mutagenesis of Asp43 and Asp153 of both EG27I and EG27II showed that the two Asp residues are critical for the enzymatic activity.
    Acta Biochimica et Biophysica Sinica 01/2008; 40(5):419-425. · 1.81 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A novel gene (Ba-ega) of Bacillus sp. AC-1, encoding an endoglucanase (Ba-EGA), was cloned and expressed in Escherichia coli. Ba-ega, containing a 1,980-bp open reading frame (ORF), encoded a protein of 659 amino acids and had a molecular mass of 74.87 kDa. Ba-EGA was a modular enzyme composed of a family-9 glycosyl hydrolase catalytic module (CM9) and a family-3 carbohydrate-binding module (CBM3). To investigate the functions of the CBM3 and CM9, a number of truncated derivatives of Ba-EGA were constructed, and all were active. The catalytic module (rCM9) alone was less stable at high temperature than the recombinant Ba-EGA (rBa-EGA). The temperature stability for the complex of rCM9 and rCBM3 was still lower than rBa-EGA, but higher than rCM9 alone. These observations indicated the existence of a non-covalent interaction between CM9 and CBM3 that might strengthen the stability of CM9. However, this interaction is not strong enough to mimic the protective effect of the CBM in the wild-type enzyme.
    Applied Microbiology and Biotechnology 08/2007; 75(6):1327-34. · 3.69 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A newly discovered bacterium, strain AC1, containing cellulase was isolated from the gastric juice of the mollusca, Ampullaria crosseans. Analysis of the 16S rDNA sequence and carbon sources revealed that the bacterium belonged to the genus Bacillus. A novel endoglucanase (Ba-EGA) was purified from culture supernatants of the bacterium growing in CMC-Na (low viscosity) induction medium. The cellulase was purified about 150-fold by ammonium sulfate fractionation, ion exchange, hydrophobic, and gel filtration chromatography, with a specific activity of 35.0 IU/mg. The molecular mass of the enzyme was 67 kDa. N-terminal amino acid sequencing revealed a sequence of SDYNYVEVLQKSILF, which had high homology with endoglucanases from the Bacillus and Clostridium species. The maximal activity of the enzyme with the substrate of CM-cellulose is at pH 4.5-6.5 and 70 degrees C, respectively. The studies on pH and temperature stability showed that the Ba-EGA is stable enough between pH 7.5 and 10.5 at 30 degrees C for 2 h, and more than 80% of the activity still remains when incubation was prolonged to 1 h at 50 degrees C. The activity of the enzyme was significantly inhibited by Fe(2+), Cu(2+) (5.0 mM of each), and sodium dodecyl sulfate (SDS) (0.5%) and obviously activated by Tween 20 and Triton X-100 (0.25% each). Binding studies revealed that the Ba-EGA had cellulose-binding domain.
    Applied Microbiology and Biotechnology 05/2006; 70(4):430-6. · 3.69 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Two novel endo-beta-1,4-glucanases, EG45 and EG27, were isolated from the gastric juice of mollusca, Ampullaria crossean, by anion exchange, hydrophobic interaction, gel filtration and a second round of anion exchange chromatography. The purified proteins EG45 and EG27 appeared as a single band on sodium dodecylsulfate polyacrylamide gel electrophoresis with a molecular mass of 45 kDa and 27 kDa, respectively. The optimum pH for CMC activity was 5.5 for EG45 and 4.4-4.8 for EG27. The optimum temperature range for EG27 was broad, between 50 degrees and 60 degrees; for EG45 it was 50 degrees. The analysis on the stability of these two endo-beta-1,4-glucanases showed that EG27 was acceptably stable at pH 3.0-11.0 even when the incubation time was prolonged to 24 h at 30 degrees, whereas EG45 remained relatively stable at pH 5.0-8.0. About 85% of the activity of EG27 could be retained upon incubation at 60 degrees for 24 h. However, less than 10% residual activity of EG45 was detected at 50 degrees. Among different kinds of substrates, both enzymes showed a high preference for carboxymethyl cellulose. EG45, in particular, showed a carboxymethyl cellulose hydrolytic activity of 146.5 IU/mg protein. Both enzymes showed low activities to xylan (from oat spelt) and Sigmacell 101, and they were inactive to p-nitrophenyl-beta-D-cellobioside, salicin and starch.
    Acta Biochimica et Biophysica Sinica 11/2005; 37(10):702-8. · 1.81 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The cellulase activity and stability of EGX, a multi-functional cellulase previously purified from the mollusca Ampullaria crossean, was systematically studied under different pH. The pH induced con-formation and stability change of EGX have been investigated by using the intrinsic fluorescence, ANS fluorescence and CD spectrum. It has been found that the conformation and activity of this cellulase were strongly dependent on the pH. EGX was stable for both the enzyme activity and the conformation from pH 5.6 to pH 7.4. As shown by intrinsic and ANS fluorescence, no red shift of emission maximum occurred and a negligible intensity change was observed at pH 5.6-7.4. The activity of EGX remained about 80% in pH 5.6-7.4 and obviously decreased out of side the pH range. Urea-induced changes in EGX at pH 5.4 and pH 8.0 were measured by intrinsic fluorescence and CD spectrum. At pH 5.4, a significantly red shift of emission maximum occurred when the concentration of urea was 5 M compared to the concentration was 3 M at pH 8.0. The alpha-helix at pH 5.4 was 40.51% in the absence of urea and 31.04% in the presence of 4 M urea. At pH 8.0 the alpha-helix was 7.23% in the presence of 4 M urea. The data indicated that EGX was much susceptible to urea-induced unfolding at pH 8.0 and much stable at pH 5.4. The greater pH dependent stability of EGX may allow the enzyme to adequately catalyze the hydrolysis of cellulosic materials under natural or industrial extreme conditions.
    Acta Biochimica et Biophysica Sinica 10/2004; 36(9):603-8. · 1.81 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The cellulase genes of some animals, most coding for endo-beta-1,4-glucanases, were found and cloned. There has been no reports about genes encoding exo-beta-1,4-glucanase or endo- -1,4-xylanase from animal. Here we cloned the cDNA of a cellulase designated as EGX from mollusc, Ampullaria crossean, and expressed it in Pichia pastoris for the first time. The cellulase EGX is a multi-functional beta cellulase with the activities of exo-beta-1,4-glucanase, endo-beta-1,4-glucanase and endo-beta-1,4-xylanase. The opening reading frame of EGX cDNA is 1185 bp and encodes 395 amino acids. The EGX gene can also be amplificated from the genomic DNA by PCR, which verified the endogenous origin of this gene. This EGX gene was the first multi-functional cellulase gene that was directly isolated from animals.
    Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica 11/2003; 35(10):941-6.
  • [show abstract] [hide abstract]
    ABSTRACT: A cellulose hydrolytic enzyme was isolated from the stomach juice of Ampullaria crossean, a kind of herbivorous mollusca. The enzyme was purified 45.3-fold to homogenety by ammonium sulfate precipitation, DEAE-Sephadex A-50 column, Bio-gel P-100 gel filtration column, and phenyl-Sepharose CL-4B column chromatography. The enzyme was designated as cellulase EGX. The purified enzyme is a multi-functional enzyme with the activities of exo-beta-1,4-glucanase (14.84 U/mg for p-nitrophenyl beta-D-cellobioside), endo-beta-1,4-glucanase (40.3 U/mg for carboxymethyl cellulose), and endo-beta-1,4-xylanase (196 U/mg for soluble xylan from birchwood). The monovalent anions such as F(-), Cl(-), Br(-), I(-), and NO(3)(-) are essential for its exo-beta-1,4-glucanase activity but have no effect on the activity for xylan, while I(-) higher than 5mM would inhibit the exo-beta-1,4-glucanase activity. The monovalent anions Cl(-) and Br(-) activate its endo-beta-1,4-glucanase activity. Binding of Cl(-) enhances the thermostability of EGX, but does not affect its fluorescence emission spectrum. The molecular mass of EGX is 41.5 kDa, as determined by SDS-PAGE. The pI value is about pH 7.35. The xylan hydrolytic activity of EGX reaches to the maximum between pH 4.8 and 6.0 and the pNPC hydrolytic activity reaches the maximum between pH 4.8 and 5.6, while that for CMC hydrolytic activity is between pH 4.4 and 4.8. Preliminary results showed that the enzyme was secreted by the mollusca itself.
    Protein Expression and Purification 10/2003; 31(1):108-14. · 1.43 Impact Factor

Publication Stats

123 Citations
1 Download
1k Views
33.54 Total Impact Points

Institutions

  • 2007–2011
    • Zhejiang Sci-Tech University
      • College of Life Sciences
      Hang-hsien, Zhejiang Sheng, China
  • 2003–2011
    • Shanghai Institutes for Biological Sciences
      Shanghai, Shanghai Shi, China
  • 2008
    • East China University of Science and Technology
      Shanghai, Shanghai Shi, China