Nobuko Arisue

Osaka University, Suika, Ōsaka, Japan

Are you Nobuko Arisue?

Claim your profile

Publications (34)151.1 Total impact

  • Nobuko Arisue · Tetsuo Hashimoto
    [Show abstract] [Hide abstract]
    ABSTRACT: The phylum Apicomplexa includes many parasitic genera of medical and veterinary importance including Plasmodium (causative agent of malaria), Toxoplasma (toxoplasmosis), and Babesia (babesiosis). Most of the apicomplexan parasites possess a unique, essential organelle, the apicoplast, which is a plastid without photosynthetic ability. Although the apicoplast is considered to have evolved through secondary endosymbiosis of a red alga into the common ancestral cell of apicomplexans, its evolutionary history has been under debate until recently. The apicoplast has a genome around 30-40kb in length. Repertoire and arrangement of the apicoplast genome-encoded genes differ among apicomplexan genera, although within the genus Plasmodium these are almost conserved. Genes in the apicoplast genome may be useful markers for Plasmodium phylogeny, because these are single copy (except for the inverted repeat region) and may have more phylogenetic signal than the mitochondrial genome that have been most commonly used for Plasmodium phylogeny. This review describes recent studies concerning the evolutionary origin of the apicoplast, presents evolutionary comparison of the primary structures of apicoplast genomes from apicomplexan parasites, and summarizes recent findings of malaria phylogeny based on apicoplast genome-encoded genes. Copyright © 2014. Published by Elsevier Ireland Ltd.
    Parasitology International 10/2014; 64(3). DOI:10.1016/j.parint.2014.10.005 · 2.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The malaria vaccine candidate antigen, SE36, is based on the N-terminal 47 kDa domain of Plasmodium falciparum serine repeat antigen 5 (SERA5). In epidemiological studies, we have previously shown the inhibitory effects of SE36 specific antibodies on in vitro parasite growth and the negative correlation between antibody level and malaria symptoms. A phase 1 b trial of the BK-SE36 vaccine in Uganda elicited 72% protective efficacy against symptomatic malaria in children aged 6-20 years during the follow-up period 130-365 days post-second vaccination. Here, we performed epitope mapping with synthetic peptides covering the whole sequence of SE36 to identify and map dominant epitopes in Ugandan adult serum presumed to have clinical immunity to P. falciparum malaria. High titer sera from the Ugandan adults predominantly reacted with peptides corresponding to two successive N-terminal regions of SERA5 containing octamer repeats and serine rich sequences, regions of SERA5 that were previously reported to have limited polymorphism. Affinity purified antibodies specifically recognizing the octamer repeats and serine rich sequences exhibited a high antibody-dependent cellular inhibition (ADCI) activity that inhibited parasite growth. Furthermore, protein structure predictions and structural analysis of SE36 using spectroscopic methods indicated that N-terminal regions possessing inhibitory epitopes are intrinsically unstructured. Collectively, these results suggest that strict tertiary structure of SE36 epitopes is not required to elicit protective antibodies in naturally immune Ugandan adults.
    PLoS ONE 06/2014; 9(6):e98460. DOI:10.1371/journal.pone.0098460 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Up to now a malaria vaccine remains elusive. The Plasmodium falciparum serine repeat antigen-5 formulated with aluminum hydroxyl gel (BK-SE36) is a blood-stage malaria vaccine candidate that has undergone phase 1a trial in malaria-naive Japanese adults. We have now assessed the safety and immunogenicity of BK-SE36 in a malaria endemic area in Northern Uganda. We performed a two-stage, randomized, single-blinded, placebo-controlled phase 1b trial (Current Controlled trials ISRCTN71619711). A computer-generated sequence randomized healthy subjects for 2 subcutaneous injections at 21-day intervals in Stage1 (21-40 year-olds) to 1-mL BK-SE36 (BKSE1.0) (n = 36) or saline (n = 20) and in Stage2 (6-20 year-olds) to BKSE1.0 (n = 33), 0.5-mL BK-SE36 (BKSE0.5) (n = 33), or saline (n = 18). Subjects and laboratory personnel were blinded. Safety and antibody responses 21-days post-second vaccination (Day42) were assessed. Post-trial, to compare the risk of malaria episodes 130-365 days post-second vaccination, Stage2 subjects were age-matched to 50 control individuals. Nearly all subjects who received BK-SE36 had induration (Stage1, n = 33, 92%; Stage2, n = 63, 96%) as a local adverse event. No serious adverse event related to BK-SE36 was reported. Pre-existing anti-SE36 antibody titers negatively correlated with vaccination-induced antibody response. At Day42, change in antibody titers was significant for seronegative adults (1.95-fold higher than baseline [95% CI, 1.56-2.43], p = 0.004) and 6-10 year-olds (5.71-fold [95% CI, 2.38-13.72], p = 0.002) vaccinated with BKSE1.0. Immunogenicity response to BKSE0.5 was low and not significant (1.55-fold [95% CI, 1.24-1.94], p = 0.75). In the ancillary analysis, cumulative incidence of first malaria episodes with ≥5000 parasites/µL was 7 cases/33 subjects in BKSE1.0 and 10 cases/33 subjects in BKSE0.5 vs. 29 cases/66 subjects in the control group. Risk ratio for BKSE1.0 was 0.48 (95% CI, 0.24-0.98; p = 0.04). BK-SE36 is safe and immunogenic. The promising potential of BK-SE36, observed in the follow-up study, warrants a double-blind phase 1/2b trial in children under 5 years. Controlled-Trials.com ISRCTN71619711 ISRCTN71619711.
    PLoS ONE 05/2013; 8(5):e64073. DOI:10.1371/journal.pone.0064073 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Populations of Plasmodium falciparum, the most virulent human malaria parasite, are diverse owing to wide levels of transmission and endemicity of infection. Genetic diversity of P. falciparum antigens, within and between parasite populations, remains a confounding factor in malaria pathogenesis as well as clinical trials of vaccine candidates. Variation of target antigens in parasite populations may arise from immune pressure depending on the levels of acquired immunity. Alternatively, similar to our study in housekeeping genes [Tanabe et al. Curr Biol 2010;70:1-7], within-population genetic diversity of vaccine candidate antigens may also be determined by geographical distance from a postulated origin in Central sub-Saharan Africa. To address this question, we obtained full-length sequences of P. falciparum genes, apical membrane antigen 1 (ama1) (n=459), circumsporozoite protein (csp) (n=472) and merozoite surface protein 1 (msp1) (n=389) from seven geographically diverse parasite populations in Africa, Southeast Asia and Oceania; and, together with previously determined sequences (n=13 and 15 for csp and msp1, respectively) analyzed within-population single nucleotide polymorphism (SNP) diversity. The three antigen genes showed SNP diversity that supports a model of isolation-by-distance. The standardized number of polymorphic sites per site, expressed as θ(S), indicates that 77-83% can be attributed by geographic distance from the African origin, suggesting that geographic distance plays a significant role in variation in target vaccine candidate antigens. Furthermore, we observed that a large proportion of SNPs in the antigen genes were shared between African and non-African parasite populations, demonstrating long term persistence of those SNPs. Our results provide important implications for developing effective malaria vaccines and better understanding of acquired immunity against falciparum malaria.
    Vaccine 01/2013; 31(9). DOI:10.1016/j.vaccine.2012.12.039 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: P. cynomolgi, a malaria-causing parasite of Asian Old World monkeys, is the sister taxon of P. vivax, the most prevalent malaria-causing species in humans outside of Africa. Because P. cynomolgi shares many phenotypic, biological and genetic characteristics with P. vivax, we generated draft genome sequences for three P. cynomolgi strains and performed genomic analysis comparing them with the P. vivax genome, as well as with the genome of a third previously sequenced simian parasite, Plasmodium knowlesi. Here, we show that genomes of the monkey malaria clade can be characterized by copy-number variants (CNVs) in multigene families involved in evasion of the human immune system and invasion of host erythrocytes. We identify genome-wide SNPs, microsatellites and CNVs in the P. cynomolgi genome, providing a map of genetic variation that can be used to map parasite traits and study parasite populations. The sequencing of the P. cynomolgi genome is a critical step in developing a model system for P. vivax research and in counteracting the neglect of P. vivax.
    Nature Genetics 08/2012; 44(9):1051-5. DOI:10.1038/ng.2375 · 29.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Parasites of the genus Plasmodium infect all classes of amniotes (mammals, birds and reptiles) and display host specificity in their infections. It is therefore generally believed that Plasmodium parasites co-evolved intimately with their hosts. Here, we report that based on an evolutionary analysis using 22 genes in the nuclear genome, extant lineages of Plasmodium parasites originated roughly in the Oligocene epoch after the emergence of their hosts. This timing on the age of the common ancestor of extant Plasmodium parasites suggest the importance of host switches and lends support to the evolutionary scenario of a "malaria big bang" that was proposed based on the evolutionary analysis using the mitochondrial genome.
    Gene 04/2012; 502(1):36-9. DOI:10.1016/j.gene.2012.04.037 · 2.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apicoplast, a nonphotosynthetic plastid derived from secondary symbiotic origin, is essential for the survival of malaria parasites of the genus Plasmodium. Elucidation of the evolution of the apicoplast genome in Plasmodium species is important to better understand the functions of the organelle. However, the complete apicoplast genome is available for only the most virulent human malaria parasite, Plasmodium falciparum. Here, we obtained the near-complete apicoplast genome sequences from eight Plasmodium species that infect a wide variety of vertebrate hosts and performed structural and phylogenetic analyses. We found that gene repertoire, gene arrangement, and other structural attributes were highly conserved. Phylogenetic reconstruction using 30 protein-coding genes of the apicoplast genome inferred, for the first time, a close relationship between P. ovale and rodent parasites. This close relatedness was robustly supported using multiple evolutionary assumptions and models. The finding suggests that an ancestral host switch occurred between rodent and human Plasmodium parasites.
    Molecular Biology and Evolution 03/2012; 29(9):2095-9. DOI:10.1093/molbev/mss082 · 14.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SERA5 is regarded as a promising malaria vaccine candidate of the most virulent human malaria parasite Plasmodium falciparum. SERA5 is a 120 kDa abundantly expressed blood-stage protein containing a papain-like protease. Since substantial polymorphism in blood-stage vaccine candidates may potentially limit their efficacy, it is imperative to fully investigate polymorphism of the SERA5 gene (sera5). In this study, we performed evolutionary and population genetic analysis of sera5. The level of inter-species divergence (kS=0.076) between P. falciparum and Plasmodium reichenowi, a closely related chimpanzee malaria parasite is comparable to that of housekeeping protein genes. A signature of purifying selection was detected in the proenzyme and enzyme domains. Analysis of 445 near full-length P. falciparum sera5 sequences from nine countries in Africa, Southeast Asia, Oceania and South America revealed extensive variations in the number of octamer repeat (OR) and serine repeat (SR) regions as well as substantial level of single nucleotide polymorphism (SNP) in non-repeat regions (2562 bp). Remarkably, a 14 amino acid sequence of SERA5 (amino acids 59-72) that is known to be the in vitro target of parasite growth inhibitory antibodies was found to be perfectly conserved in all 445 worldwide isolates of P. falciparum evaluated. Unlike other major vaccine target antigen genes such as merozoite surface protein-1, apical membrane antigen-1 or circumsporozoite protein, no strong evidence for positive selection was detected for SNPs in the non-repeat regions of sera5. A biased geographical distribution was observed in SNPs as well as in the haplotypes of the sera5 OR and SR regions. In Africa, OR- and SR-haplotypes with low frequency (<5%) and SNPs with minor allele frequency (<5%) were abundant and were mostly continent-specific. Consistently, significant genetic differentiation, assessed by the Wright's fixation index (Fst) of inter-population variance in allele frequencies, was detected for SNPs and both OR- and SR-haplotypes among almost all parasite populations. The exception was parasite populations between Tanzania and Ghana, suggesting frequent gene flow in Africa. The present study points to the importance of investigating whether biased geographical distribution for SNPs and repeat variants in the OR and SR regions affect the reactivity of human serum antibodies to variants.
    Vaccine 02/2012; 30(9):1583-93. DOI:10.1016/j.vaccine.2011.12.124 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmodium vivax infection has been gaining attention because of its re-emergence in several parts of the world. Southeastern Turkey is one of the places in which persistent focal malaria caused exclusively by P. vivax parasites occurs. Although control and elimination studies have been underway for many years, no detailed study has been conducted to understand the mechanisms underlying the ineffective control of malaria in this region. Here, for the first time, using serologic markers we try to extract as much information as possible in this region to get a glimpse of P. vivax transmission. We conducted a sero-immunological study, evaluating antibody responses of individuals living in Sanliurfa to four different P. vivax antigens; three blood-stage antigens (PvMSP1₁₉, PvAMA1-ecto, and PvSERA4) and one pre-erythrocytic stage antigen (PvCSP). The results suggest that a prior history of malaria infection and age can be determining factors for the levels and sustainability of naturally acquired antibodies. Significantly higher antibody responses to all the studied antigens were observed in blood smear-negative individuals with a prior history of malaria infection. Moreover, these individuals were significantly older than blood smear-negative individuals with no prior history of infection. These data from an area of sole P. vivax-endemic region may have important implications for the global malaria control/elimination programs and vaccine design.
    PLoS ONE 11/2011; 6(11):e28126. DOI:10.1371/journal.pone.0028126 · 3.23 Impact Factor
  • Source
    Gene Duplication, 10/2011; , ISBN: 978-953-307-387-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: A devastating disease spread by mosquitoes with high-efficiency, malaria imposes an enormous burden for which no licensed vaccine currently exists. Although the genome complexity of the parasite has made vaccine development tenuous, an effective malaria vaccine would be a valuable tool for control, elimination and eventual eradication. The Plasmodium serine repeat antigen 5 (SERA5) is an abundant asexual blood stage antigen that does not show any antigenic variation and exhibits limited polymorphism, making it a suitable vaccine candidate. Identified by comparing the IgG status of people in endemic areas with protective immunity and those with malaria symptoms, the vaccine potential of the N-terminal domain of Plasmodium falciparum SERA5 is also strongly supported by experimental data and immune responses both measured in vitro and in animal challenge models. The current understanding of SERA5 will be presented, particularly in relation to its path towards clinical development. The review highlights lessons learned and sorts out issues upon which further research efforts are needed.
    Vaccine 06/2011; 29(35):5837-45. DOI:10.1016/j.vaccine.2011.06.052 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SERA gene sequences were newly determined from 11 primate Plasmodium species including two human parasites, P. ovale and P. malariae, and the evolutionary history of SERA genes was analyzed together with 7 known species. All have one each of Group I to III cysteine-type SERA genes and varying number of Group IV serine-type SERA genes in tandem cluster. Notably, Group IV SERA genes were ascertained in all mammalian parasite lineages; and in two primate parasite lineages gene events such as duplication, truncation, fragmentation and gene loss occurred at high frequency in a manner that mimics the birth-and-death evolution model. Transcription profile of individual SERA genes varied greatly among rodent and monkey parasites. Results support the lineage-specific evolution of the Plasmodium SERA gene family. These findings provide further impetus for studies that could clarify/provide proof-of-concept that duplications of SERA genes were associated with the parasites' expansion of host range and the evolutionary conundrums of multigene families in Plasmodium.
    PLoS ONE 03/2011; 6(3):e17775. DOI:10.1371/journal.pone.0017775 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 200-kD merozoite surface protein of Plasmodium vivax (PvMSP-1) is one of the leading vaccine candidates against P. vivax malaria. However, the gene encoding PvMSP-1 (pvmsp1) is highly polymorphic and is a major obstacle to effective vaccine development. To further understand polymorphism in pvmsp1, we obtained 30 full-length pvmsp1 sequences from southeastern Turkey. Comparative analysis of sequences from Turkey and other areas showed substantially limited polymorphism. Substitutions were found at 280 and 162 amino acid sites in samples from other regions and those from Turkey, respectively. Eight substitutions were unique to Turkey. In one of them, D/E at position 1706 in the C-terminal 19-kD region, the K/E change at 1709 was the only polymorphism previously known. Limited diversity was also observed in microsatellites. Data suggest a recent population bottleneck in Turkey that may have obscured a signature for balancing selection in the C-terminal 42-kD region, which was otherwise detectable in other areas.
    The American journal of tropical medicine and hygiene 12/2010; 83(6):1230-7. DOI:10.4269/ajtmh.2010.10-0353 · 2.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Apicomplexan parasites of the genus Plasmodium, pathogens causing malaria, and the genera Babesia and Theileria, aetiological agents of piroplasmosis, are closely related. However, their mitochondrial (mt) genome structures are highly divergent: Plasmodium has a concatemer of 6-kb unit and Babesia/Theileria a monomer of 6.6- to 8.2-kb with terminal inverted repeats. Fragmentation of ribosomal RNA (rRNA) genes and gene arrangements are remarkably distinctive. To elucidate the evolutionary origin of this structural divergence, we determined the mt genome of Eimeria tenella, pathogens of coccidiosis in domestic fowls. Analysis revealed that E. tenella mt genome was concatemeric with similar protein-coding genes and rRNA gene fragments to Plasmodium. Copy number was 50-fold of the nuclear genome. Evolution of structural divergence in the apicomplexan mt genomes is discussed.
    Mitochondrion 10/2010; 11(2):273-8. DOI:10.1016/j.mito.2010.10.003 · 3.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial (mt) genomes from diverse phylogenetic groups vary considerably in size, structure, and organization. The genus Plasmodium, causative agent of malaria, of the phylum Apicomplexa, has the smallest mt genome in the form of a circular and/or tandemly repeated linear element of 6 kb, encoding only three protein genes (cox1, cox3, and cob). The closely related genera Babesia and Theileria also have small mt genomes (6.6 kb) that are monomeric linear with an organization distinct from Plasmodium. To elucidate the structural divergence and evolution of mt genomes between Babesia/Theileria and Plasmodium, we determined five new sequences from Babesia bigemina, B. caballi, B. gibsoni, Theileria orientalis, and T. equi. Together with previously reported sequences of B. bovis, T. annulata, and T. parva, all eight Babesia and Theileria mt genomes are linear molecules with terminal inverted repeats (TIRs) on both ends containing three protein-coding genes (cox1, cox3, and cob) and six large subunit (LSU) ribosomal RNA (rRNA) gene fragments. The organization and transcriptional direction of protein-coding genes and the rRNA gene fragments were completely conserved in the four Babesia species. In contrast, notable variation occurred in the four Theileria species. Although the genome structures of T. annulata and T. parva were nearly identical to those of Babesia, an inversion in the 3-kb central region was found in T. orientalis. Moreover, the T. equi mt genome is the largest (8.2 kb) and most divergent with unusually long TIR sequences, in which cox3 and two LSU rRNA gene fragments are located. The T. equi mt genome showed little synteny to the other species. These results suggest that the Theileria mt genome is highly diverse with lineage-specific evolution in two Theileria species: genome inversion in T. orientalis and gene-embedded long TIR in T. equi.
    Molecular Biology and Evolution 05/2010; 27(5):1107-16. DOI:10.1093/molbev/msp320 · 14.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 200 kDa merozoite surface protein 1 (MSP-1) of malaria parasites, a strong vaccine candidate, plays a key role during erythrocyte invasion and is a target of host protective immune response. Plasmodium vivax, the most widespread human malaria parasite, is closely related to parasites that infect Asian Old World monkeys, and has been considered to have become a parasite of man by host switch from a macaque malaria parasite. Several Asian monkey parasites have a range of natural hosts. The same parasite species shows different disease manifestations among host species. This suggests that host immune responses to P. vivax-related malaria parasites greatly differ among host species (albeit other factors). It is thus tempting to invoke that a major immune target parasite protein such as MSP-1 underwent unique evolution, depending on parasite species that exhibit difference in host range and host specificity. We performed comparative phylogenetic and population genetic analyses of the gene encoding MSP-1 (msp1) from P. vivax and nine P. vivax-related simian malaria parasites. The inferred phylogenetic tree of msp1 significantly differed from that of the mitochondrial genome, with a striking displacement of P. vivax from a position close to P. cynomolgi in the mitochondrial genome tree to an outlier of Asian monkey parasites. Importantly, positive selection was inferred for two ancestral branches, one leading to P. inui and P. hylobati and the other leading to P. vivax, P. fieldi and P. cynomolgi. This ancestral positive selection was estimated to have occurred three to six million years ago, coinciding with the period of radiation of Asian macaques. Comparisons of msp1 polymorphisms between P. vivax, P. inui and P. cynomolgi revealed that while some positively selected amino acid sites or regions are shared by these parasites, amino acid changes greatly differ, suggesting that diversifying selection is acting species-specifically on msp1. The present results indicate that the msp1 locus of P. vivax and related parasite species has lineage-specific unique evolutionary history with positive selection. P. vivax and related simian malaria parasites offer an interesting system toward understanding host species-dependent adaptive evolution of immune-target surface antigen genes such as msp1.
    BMC Evolutionary Biology 02/2010; 10:52. DOI:10.1186/1471-2148-10-52 · 3.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is widely believed that human malaria parasites infect only man as a natural host. However, earlier morphological observations suggest that great apes are likely to be natural reservoirs as well. To identify malaria parasites in great apes, we screened 60 chimpanzees imported into Japan. Using the sequences of small subunit rRNA and the mitochondrial genome, we identified infection of Plasmodium malariae, a human malaria parasite, in two chimpanzees that were imported about thirty years ago. The chimpanzees have been asymptomatic to the present. In Japan, indigenous malaria disappeared more than fifty years ago; and thus, it is most likely inferred that the chimpanzees were infected in Africa, and P. malariae isolates were brought into Japan from Africa with their hosts, suggesting persistence of parasites at low level for thirty years. Such a long term latent infection is a unique feature of P. malariae infection in humans. To our knowledge, this is the first to report P. malariae infection in chimpanzees and a human malaria parasite from nonhuman primates imported to a nonendemic country.
    PLoS ONE 10/2009; 4(10):e7412. DOI:10.1371/journal.pone.0007412 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phylogenetic analyses of several marker genes have previously shown that Asian primate Plasmodium species (malaria parasites) were monophyletic including Plasmodium vivax, one of the four malaria parasites that infect humans. However, except for the presence of a few established groupings, phylogenetic relationships among the Asian primate Plasmodium species + P. vivax group have neither been clearly resolved with confident statistical supports, nor the closest relative to P. vivax was elucidated. Since comparative biological studies between P. vivax and its closest relative would provide valuable information on immunopathogenesity of vivax malaria, the phylogenetic positions of P. vivax in the clade comprised of Asian primate Plasmodium species are crucial. In order to clarify the phylogeny and evolution of Asian primate Plasmodium species including P. vivax, we obtained sequences of apicoplast genome-encoded genes for small subunit rRNA (SSUrRNA), large subunit rRNA (LSUrRNA), and caseinolytic protease C (ClpC) from 10 Plasmodium species: P. vivax, P. coatneyi, P. cynomolgi, P. fieldi, P. fragile, P. hylobati, P .inui, P. knowlesi, P. simiovale, and P. gonderi. Together with published sequences of apicoplast genome-encoded elongation factor Tu (EF-Tu) from these species, we performed phylogenetic analyses of a combined 4-gene data set using P. gonderi, an African old world monkey parasite, as an outgroup. The ML phylogeny based on a 'concatenate model' for combining information of the 4 genes clearly revealed close relationships between P. vivax and P. cynomolgi and monophyly of P. fragile with the P. coatneyi/P. knowlesi clade. When 'separate' models were assumed for combining phylogenetic information from the 4 genes that were independently analyzed, the support for the P. vivax/P. cynomolgi clade was substantially decreased, but the monophyly of P. fragile with the P. coatneyi/P. knowlesi clade was still robustly confirmed. The present analyses place P. fragile in a position that is incongruent with the early branching status of P. fragile amongst P-vivax-related primate Plasmodium species propose by Escalante et al. (Proc Natl Acad Sci USA 2005 102: 1980).
    Gene 10/2009; 450(1-2):32-8. DOI:10.1016/j.gene.2009.10.001 · 2.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Unlike other eukaryotes, malaria parasites in the genus Plasmodium have structurally and functionally different paralogous copies of the cytosolic (cyto-) SSU rRNA (18S rRNA) gene that are expressed at different developmental stages. In P. falciparum, P. vivax, and P. berghei, A-type cyto-SSU rRNA is expressed in asexual stage, while S-type in sporozoite stage. A third type (O-type) has been described in P. vivax. It is expressed only in oocyst stage in the mosquito. Recently, it has been shown that the maintenance of heterogeneous cyto-SSU rRNAs in Plasmodium can be modeled as a birth-and-death process under strong purifying selection [Rooney, A.P., 2004. Mechanisms underlying the evolution and maintenance of functionally heterogeneous 18S rRNA genes in Apicomplexans. Mol. Biol. Evol. 21, 1704-1711]. In this study, we performed detailed phylogenetic analyses of Plasmodium cyto-SSU rRNAs with special emphasis on the evolution of multi-copy genes in simian Plasmodium species. We sequenced paralogous copies of the cyto-SSU rRNA genes from an African simian Plasmodium species, P. gonderi, and Asian simian Plasmodium species, P. fragile, P. coatneyi, P. inui, P. hylobati, P. fieldi, P. simiovale, and P. cynomolgi. Interestingly, all Asian simian Plasmodium species have a single S-type-like gene and several A-type-like genes. Alignment analysis demonstrated for the first time that an approximately 50-residue insertion in the V7 variable region near the stem 43 is shared exclusively by the S-type-like sequences of the Asian simian Plasmodium species and the S- and O-type sequences of P. vivax. We comprehensively analyzed all cyto-SSU rRNA sequences of the genus Plasmodium currently available in the database. Phylogenetic analyses of all publicly available cyto-SSU rRNA sequences for the genus Plasmodium clearly demonstrated that gene duplication events giving rise to A- and S-type-like sequences took place independently at least three times in the Plasmodium evolution, supporting the hypothesis that these genes evolve according to a birth-and-death model.
    Molecular Phylogenetics and Evolution 05/2008; 47(1):45-53. DOI:10.1016/j.ympev.2008.01.031 · 4.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Plasmodium MSP-1 is a promising malaria vaccine candidate. However, the highly polymorphic nature of the MSP-1 gene (msp1) presents a potential obstacle for effective vaccine development. To investigate the evolutionary history of msp1 polymorphism in P. vivax, we construct phylogenetic trees of msp1 from P. vivax and related monkey malaria parasite species. All P. vivax msp1 alleles cluster in the P. vivax lineage and are not distributed among other species. Similarly, all P. cynomolgi msp1 alleles cluster in the P. cynomolgi lineage. This suggests that, in contrast to presumed ancient origin of P. falciparum msp1 polymorphism, the origin of P. vivax msp1 polymorphism is relatively recent. We observed positive selection in the P. vivax lineage but not in P. cynomolgi. Also, positive selection acts on different regions of msp1 in P. vivax and P. falciparum. This study shows that the evolutionary history of msp1 differs greatly among parasite lineages.
    Molecular and Biochemical Parasitology 12/2007; 156(1):74-9. DOI:10.1016/j.molbiopara.2007.07.002 · 2.24 Impact Factor

Publication Stats

717 Citations
151.10 Total Impact Points

Institutions

  • 2007–2014
    • Osaka University
      • Department of Molecular Protozoology
      Suika, Ōsaka, Japan
  • 2005
    • University of Tsukuba
      • Institute of Biological Sciences
      Tsukuba, Ibaraki, Japan
  • 2001–2004
    • The Graduate University for Advanced Studies
      Миура, Kanagawa, Japan
  • 1998
    • The Institute of Statistical Mathematics
      Edo, Tōkyō, Japan