Mark R. Krumholz

University of California, Santa Cruz, Santa Cruz, California, United States

Are you Mark R. Krumholz?

Claim your profile

Publications (144)769.69 Total impact

  • M.R. Krumholz, J.C. Forbes
    [Show abstract] [Hide abstract]
    ABSTRACT: The evolution of thin axisymmetric viscous accretion disks is a classic problem in astrophysics. While models based on this simplified geometry provide only approximations to the true processes of instability-driven mass and angular momentum transport, their simplicity makes them invaluable tools for both semi-analytic modeling and simulations of long-term evolution where two- or three-dimensional calculations are too computationally costly. Despite the utility of these models, the only publicly-available frameworks for simulating them are rather specialized and non-general. Here we describe a highly flexible, general numerical method for simulating viscous thin disks with arbitrary rotation curves, viscosities, boundary conditions, grid spacings, equations of state, and rates of gain or loss of mass (e.g., through winds) and energy (e.g., through radiation). Our method is based on a conservative, finite-volume, second-order accurate discretization of the equations, which we solve using an unconditionally-stable implicit scheme. We implement Anderson acceleration to speed convergence of the scheme, and show that this leads to factor of speed gains over non-accelerated methods in realistic problems, though the amount of speedup is highly problem-dependent. We have implemented our method in the new code Viscous Accretion Disk Evolution Resource (VADER), which is freely available for download from https://bitbucket.org/krumholz/vader/ under the terms of the GNU General Public License.
    03/2015; 11. DOI:10.1016/j.ascom.2015.02.005
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stellar population synthesis techniques for predicting the observable light emitted by a stellar population have extensive applications in numerous areas of astronomy. However, accurate predictions for small populations of young stars, such as those found in individual star clusters, star-forming dwarf galaxies, and small segments of spiral galaxies, require that the population be treated stochastically. Conversely, accurate deductions of the properties of such objects also requires consideration of stochasticity. Here we describe a comprehensive suite of modular, open-source software tools for tackling these related problems. These include: a greatly-enhanced version of the slug code introduced by da Silva et al. (2012), which computes spectra and photometry for stochastically- or deterministically-sampled stellar populations with nearly-arbitrary star formation histories, clustering properties, and initial mass functions; cloudy_slug, a tool that automatically couples slug-computed spectra with the cloudy radiative transfer code in order to predict stochastic nebular emission; bayesphot, a general-purpose tool for performing Bayesian inference on the physical properties of stellar systems based on unresolved photometry; and cluster_slug and sfr_slug, a pair of tools that use bayesphot on a library of slug models to compute the mass, age, and extinction of mono-age star clusters, and the star formation rate of galaxies, respectively. The latter two tools make use of an extensive library of pre-computed stellar population models, which are included the software. The complete package is available at http://www.slugsps.com.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we present the MOSFIRE Deep Evolution Field (MOSDEF) survey. The MOSDEF survey aims to obtain moderate-resolution (R=3000-3650) rest-frame optical spectra (~3700-7000 Angstrom) for ~1500 galaxies at 1.37<z<3.80 in three well-studied CANDELS fields: AEGIS, COSMOS, and GOODS-N. Targets are selected in three redshift intervals: 1.37<z<1.70, 2.09<z<2.61, and 2.95<z<3.80, down to fixed H_AB (F160W) magnitudes of 24.0, 24.5 and 25.0, respectively, using the photometric and spectroscopic catalogs from the 3D-HST survey. We target both strong nebular emission lines (e.g., [OII], Hbeta, [OIII], 5008, Halpha, [NII], and [SII]) and stellar continuum and absorption features (e.g., Balmer lines, Ca-II H and K, Mgb, 4000 Angstrom break). Here we present an overview of our survey, the observational strategy, the data reduction and analysis, and the sample characteristics based on spectra obtained during the first 24 nights. To date, we have completed 21 masks, obtaining spectra for 591 galaxies. For ~80% of the targets we identify and measure multiple emission or absorption lines. In addition, we confirm 55 additional galaxies, which were serendipitously detected. The MOSDEF galaxy sample includes unobscured star-forming, dusty star-forming, and quiescent galaxies and spans a wide range in stellar mass (~10^9-10^11.5 Msol) and star formation rate (~0-10^4 Msol/yr). The spectroscopically confirmed sample is roughly representative of an H-band limited galaxy sample at these redshifts. With its large sample size, broad diversity in galaxy properties, and wealth of available ancillary data, MOSDEF will transform our understanding of the stellar, gaseous, metal, dust, and black hole content of galaxies during the time when the universe was most active.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metal production in galaxies traces star formation, and is therefore both very patchy and highly concentrated toward the centers of galactic discs. This would seem to suggest that galaxies should have highly inhomogeneous metal distributions with strong radial gradients, but observations of present-day galaxies typically show only shallow gradients with little to no azimuthal variation, implying the existence of a redistribution mechanism. Unfortunately, this mechanism is still poorly understood. We study the possible role of gravitational instability-driven turbulence as a mixing mechanism by simulating an unstable, isolated galactic disc at high resolution, including metal fields treated as passive scalars. Since any cylindrical field can be decomposed into a sum of Fourier-Bessel basis functions, we set up initial metal fields characterized by these functions and study how different modes decay and mix. We find that both shear and turbulence contribute to mixing, but that the mixing rate strongly depends on the symmetries. Non-axisymmetric modes have decay times smaller than the galactic orbital period because shear winds them up to small spatial scales, where they are quickly erased by turbulence. In contrast, the decay timescales for axisymmetric modes are greater than the orbital period of the galaxy, although to all but the largest-scale inhomogeneities the decay time is still short enough for significant mixing to occur over cosmological time. The different timescales provides a natural explanation for why galaxies retain metallicity gradients while there is almost no variation at a fixed radius. Moreover the long timescales required for mixing axisymmetric modes may explain the much greater diversity of metallicity gradients observed in high redshift galaxies compared to local ones. The high-redshift systems have not yet reached equilibrium, while most of the local ones have.
  • Source
    Todd A. Thompson, Mark R. Krumholz
    [Show abstract] [Hide abstract]
    ABSTRACT: We show that the turbulent gas in the star-forming regions of galaxies is unstable to wind formation via momentum deposition by radiation pressure or other momentum sources like supernova explosions, even if the system is below the average Eddington limit. This conclusion follows from the fact that the critical momentum injection rate per unit mass for unbinding gas from a self-gravitating system is proportional to the gas surface density and that a turbulent medium presents a broad distribution of column densities to the sources. For an average Eddington ratio of = 0.1 and for turbulent Mach numbers greater than 30, we find that ~1% of the gas is ejected per dynamical timescale at velocities larger than the local escape velocity. Because of the lognormal shape of the surface density distribution, the mass loss rate is highly sensitive to the average Eddington ratio, reaching 20-40% of the gas mass per dynamical time for = 1. Implications for the efficiency of star formation in giant molecular clouds are highlighted. Uncertainties are discussed.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Legacy ExtraGalactic UV Survey (LEGUS) is a Cycle 21 Treasury program on the Hubble Space Telescope, aimed at the investigation of star formation and its relation with galactic environment in nearby galaxies, from the scales of individual stars to those of ~kpc-size clustered structures. Five-band imaging, from the near-ultraviolet to the I-band, with the Wide Field Camera 3, plus parallel optical imaging with the Advanced Camera for Surveys, is being collected for selected pointings of 50 galaxies within the local 12 Mpc. The filters used for the observations with the Wide Field Camera 3 are: F275W(2,704 A), F336W(3,355 A), F438W(4,325 A), F555W(5,308 A), and F814W(8,024 A); the parallel observations with the Advanced Camera for Surveys use the filters: F435W(4,328 A), F606W(5,921 A), and F814W(8,057 A). The multi-band images are yielding accurate recent (<~50 Myr) star formation histories from resolved massive stars and the extinction-corrected ages and masses of star clusters and associations. The extensive inventories of massive stars and clustered systems will be used to investigate the spatial and temporal evolution of star formation within galaxies. This will, in turn, inform theories of galaxy evolution and improve the understanding of the physical underpinning of the gas-star formation relation and the nature of star formation at high redshift. This paper describes the survey, its goals and observational strategy, and the initial science results. Because LEGUS will provide a reference survey and a foundation for future observations with JWST and with ALMA, a large number of data products are planned for delivery to the community.
  • Source
    Yi Feng, Mark R. Krumholz
    [Show abstract] [Hide abstract]
    ABSTRACT: The abundances of elements in stars are a critical clue to their origins. Observed star-to-star variations in logarithmic abundance within an open cluster are typically only $\sim 0.01-0.05$ over many elements, significantly smaller than the variation of $\sim 0.06-0.3$ seen in the interstellar medium from which the stars form. It is unknown why clusters are so homogenous, and whether homogeneity should also prevail in regions of lower star formation efficiency that do not produce bound clusters. Here we report adaptive mesh simulations using passively-advected scalars in order to trace the mixing of chemical elements as star-forming clouds form and collapse. We show that turbulent mixing during cloud assembly naturally produces a stellar abundance scatter at least ~5 times smaller than that in the gas, sufficient to fully explain the observed chemical homogeneity of stars. Moreover, mixing occurs very early, so that regions with efficiencies $\varepsilon \sim 10\%$ are nearly as well-mixed as those with $\varepsilon\sim 50\%$. This implies that even regions that do not form bound clusters are likely to be well-mixed, and enhances the prospects for using chemical tagging to reconstruct dissolved star clusters via their unique chemical signatures.
    Nature 08/2014; 513(7519). DOI:10.1038/nature13662 · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have used multi-wavelength Hubble Space Telescope WFC3 data of the starbursting spiral galaxy M83 in order to measure variations in the upper end of the stellar initial mass function (uIMF) using the production rate of ionizing photons in unresolved clusters with ages $\leq$ 8 Myr. As in earlier papers on M51 and NGC 4214, the upper end of the stellar IMF in M83 is consistent with an universal IMF, and stochastic sampling of the stellar populations in the $\lessapprox$ 10$^{3}$ Msun clusters are responsible for any deviations in this universality. The ensemble cluster population, as well as individual clusters, also imply that the most massive star in a cluster does not depend on the cluster mass. In fact, we have found that these small clusters seem to have an over-abundance of ionizing photons when compared to an expected universal or truncated IMF. This also suggests that the presence of massive stars in these clusters does not affect the star formation in a destructive way.
    The Astrophysical Journal 07/2014; 793(1). DOI:10.1088/0004-637X/793/1/4 · 6.28 Impact Factor
  • Source
    Mark R. Krumholz, John C. Forbes
    [Show abstract] [Hide abstract]
    ABSTRACT: The evolution of thin axisymmetric viscous accretion disks is a classic problem in astrophysics. While such models provide only approximations to the true processes of instability-driven mass and angular momentum transport, their simplicity makes them invaluable tools for both semi-analytic modeling and simulations of long-term evolution where two- or three-dimensional calculations are too computationally costly. Despite the utility of these models, there is no publicly-available framework for simulating them. Here we describe a highly flexible, general numerical method for simulating viscous thin disks with arbitrary rotation curves, viscosities, boundary conditions, grid spacings, equations of state, and rates of gain or loss of mass (e.g., through winds) and energy (e.g., through radiation). Our method is based on a conservative, finite-volume, second-order accurate discretization of the equations, which we solve using an unconditionally-stable implicit scheme. We implement Anderson acceleration to speed convergence of the scheme, and show that this leads to factor of ~5 speed gains over non-accelerated methods in realistic problems. We have implemented our method in the new code Viscous Accretion Disk Evolution Resource (VADER), which is freely available for download from https://bitbucket.org/krumholz/vader/ under the terms of the GNU General Public License.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Star clusters larger than $\sim 10^{3}$ $M_\odot$ contain multiple hot stars that launch fast stellar winds. The integrated kinetic energy carried by these winds is comparable to that delivered by supernova explosions, suggesting that at early times winds could be an important form of feedback on the surrounding cold material from which the star cluster formed. However, the interaction of these winds with the surrounding clumpy, turbulent, cold gas is complex and poorly understood. Here we investigate this problem via an accounting exercise: we use empirically determined properties of four well-studied massive star clusters to determine where the energy injected by stellar winds ultimately ends up. We consider a range of kinetic energy loss channels, including radiative cooling, mechanical work on the cold interstellar medium, thermal conduction, heating of dust via collisions by the hot gas, and bulk advection of thermal energy by the hot gas. We show that, for at least some of the clusters, none of these channels can account for more than a small fraction of the injected energy. We suggest that turbulent mixing at the hot-cold interface or physical leakage of the hot gas from the HII region can efficiently remove the kinetic energy injected by the massive stars in young star clusters. Even for the clusters where we are able to account for all the injected kinetic energy, we show that our accounting sets strong constraints on the importance of stellar winds as a mechanism for feedback on the cold interstellar medium.
    Monthly Notices of the Royal Astronomical Society 05/2014; 442(3). DOI:10.1093/mnras/stu1037 · 5.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Star clusters larger than $\sim 10^{3}$ $M_\odot$ contain multiple hot stars that launch fast stellar winds. The integrated kinetic energy carried by these winds is comparable to that delivered by supernova explosions, suggesting that at early times winds could be an important form of feedback on the surrounding cold material from which the star cluster formed. However, the interaction of these winds with the surrounding clumpy, turbulent, cold gas is complex and poorly understood. Here we investigate this problem via an accounting exercise: we use empirically determined properties of four well-studied massive star clusters to determine where the energy injected by stellar winds ultimately ends up. We consider a range of kinetic energy loss channels, including radiative cooling, mechanical work on the cold interstellar medium, thermal conduction, heating of dust via collisions by the hot gas, and bulk advection of thermal energy by the hot gas. We show that, for at least some of the clusters, none of these channels can account for more than a small fraction of the injected energy. We suggest that turbulent mixing at the hot-cold interface or physical leakage of the hot gas from the HII region can efficiently remove the kinetic energy injected by the massive stars in young star clusters. Even for the clusters where we are able to account for all the injected kinetic energy, we show that our accounting sets strong constraints on the importance of stellar winds as a mechanism for feedback on the cold interstellar medium.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The integrated light of a stellar population, measured through photometric filters that are sensitive to the presence of young stars, is often used to infer the star formation rate (SFR) for that population. However, these techniques rely on an assumption that star formation is a continuous process, whereas in reality stars form in discrete spatially- and temporally-correlated structures. This discreteness causes the light output to undergo significant time-dependent fluctuations, which, if not accounted for, introduce errors and biases in the inferred SFRs. We use SLUG (a code that Stochastically Lights Up Galaxies) to simulate galaxies undergoing stochastic star formation. We then use these simulations to present a quantitative analysis of these effects and provide tools for calculating probability distribution functions of SFRs given a set of observations. We show that, depending on the SFR tracer used, stochastic fluctuations can produce non-trivial errors at SFRs as high as 1 Msun/yr, and we suggest methods by which future analyses that rely on integrated-light SFR indicators can properly account for stochastic effects. We emphasize that due to the stochastic behavior of blue tracers of SFR, one cannot assign a deterministic single value to the SFR of an individual galaxy.
    Monthly Notices of the Royal Astronomical Society 03/2014; 444(4). DOI:10.1093/mnras/stu1688 · 5.23 Impact Factor
  • Source
    Mark R. Krumholz
    [Show abstract] [Hide abstract]
    ABSTRACT: In this chapter I review theoretical models for the formation of very massive stars. After a brief overview of some relevant observations, I spend the bulk of the chapter describing two possible routes to the formation of very massive stars: formation via gas accretion, and formation via collisions between smaller stars. For direct accretion, I discuss the problems of how interstellar gas may be prevented from fragmenting so that it is available for incorporation into a single very massive star, and I discuss the problems presented for massive star formation by feedback in the form of radiation pressure, photoionization, and stellar winds. For collision, I discuss several mechanisms by which stars might be induced to collide, and I discuss what sorts of environments are required to enable each of these mechanisms to function. I then compare the direct accretion and collision scenarios, and discuss possible observational signatures that could be used to distinguish between them. Finally, I come to the question of whether the process of star formation sets any upper limits on the masses of stars that can form.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The luminosity distribution of the brightest star clusters in a population of galaxies encodes critical pieces of information about how clusters form, evolve and disperse, and whether and how these processes depend on the large-scale galactic environment. However, extracting constraints on models from these data is challenging, in part because comparisons between theory and observation have traditionally required computationally intensive Monte Carlo methods to generate mock data that can be compared to observations. We introduce a new method that circumvents this limitation by allowing analytic computation of cluster order statistics, i.e. the luminosity distribution of the Nth most luminous cluster in a population. Our method is flexible and requires few assumptions, allowing for parametrized variations in the initial cluster mass function and its upper and lower cutoffs, variations in the cluster age distribution, stellar evolution and dust extinction, as well as observational uncertainties in both the properties of star clusters and their underlying host galaxies. The method is fast enough to make it feasible for the first time to use Markov chain Monte Carlo methods to search parameter space to find best-fitting values for the parameters describing cluster formation and disruption, and to obtain rigorous confidence intervals on the inferred values. We implement our method in a software package called the Cluster Luminosity Order-Statistic Code, which we have made publicly available.
    Monthly Notices of the Royal Astronomical Society 02/2014; 438(3):47-. DOI:10.1093/mnras/stt2351 · 5.23 Impact Factor
  • Source
    Mark R. Krumholz
    [Show abstract] [Hide abstract]
    ABSTRACT: Star formation lies at the center of a web of processes that drive cosmic evolution: generation of radiant energy, synthesis of elements, formation of planets, and development of life. Decades of observations have yielded a variety of empirical rules about how it operates, but at present we have no comprehensive, quantitative theory. In this review I discuss the current state of the field of star formation, focusing on three central questions: what controls the rate at which gas in a galaxy converts to stars? What determines how those stars are clustered, and what fraction of the stellar population ends up in gravitationally-bound structures? What determines the stellar initial mass function, and does it vary with star-forming environment? I use these three question as a lens to introduce the basics of star formation, beginning with a review of the observational phenomenology and the basic physical processes. I then review the status of current theories that attempt to solve each of the three problems, pointing out links between them and opportunities for theoretical and numerical work that crosses the scale between them. I conclude with a discussion of prospects for theoretical progress in the coming years.
    Physics Reports 02/2014; DOI:10.1016/j.physrep.2014.02.001 · 22.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The enormous radiative and mechanical luminosities of massive stars impact a vast range of scales and processes, from the reionization of the universe, to the evolution of galaxies, to the regulation of the interstellar medium, to the formation of star clusters, and even to the formation of planets around stars in such clusters. Two main classes of massive star formation theory are under active study, Core Accretion and Competitive Accretion. In Core Accretion, the initial conditions are self-gravitating, centrally concentrated cores that condense with a range of masses from the surrounding, fragmenting clump environment. They then undergo relatively ordered collapse via a central disk to form a single star or a small-N multiple. In this case, the pre-stellar core mass function has a similar form to the stellar initial mass function. In Competitive Accretion, the material that forms a massive star is drawn more chaotically from a wider region of the clump without passing through a phase of being in a massive, coherent core. In this case, massive star formation must proceed hand in hand with star cluster formation. If stellar densities become very high near the cluster center, then collisions between stars may also help to form the most massive stars. We review recent theoretical and observational progress towards understanding massive star formation, considering physical and chemical processes, comparisons with low and intermediate-mass stars, and connections to star cluster formation.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present three Orion simulations of star cluster formation in a 1000 Msun, turbulent molecular cloud clump, including the effects of radiative transfer, protostellar outflows, and magnetic fields. Our simulations all use self-consistent turbulent initial conditions and vary the mean mass-to-flux ratio relative to the critical value over 2, 10, and infinity to gauge the influence of magnetic fields on star cluster formation. We find, in good agreement with previous studies, that magnetic fields of typically observed strengths lower the star formation rate by a factor of 2.4 and reduce the amount of fragmentation by a factor of 2 relative to the zero-field case. We also find that the field increases the characteristic sink particle mass, again by a factor of 2.4. The magnetic field also increases the degree of clustering in our simulations, such that the maximum stellar densities in the strong field case are higher than the others by again a factor of 2. This clustering tends to encourage the formation of multiple systems, which are more common in the rad-MHD runs than the rad-hydro run. The companion frequency in our simulations is consistent with observations of multiplicity in Class I sources, particularly for the strong field case. Finally, we find evidence of primordial mass segregation in our simulations reminiscent of that observed in star clusters like the Orion Nebula Cluster.
    Monthly Notices of the Royal Astronomical Society 01/2014; 439(4). DOI:10.1093/mnras/stu190 · 5.23 Impact Factor
  • Source
    Desika Narayanan, Mark R. Krumholz
    [Show abstract] [Hide abstract]
    ABSTRACT: Observations of molecular gas in high-z star-forming galaxies typically rely on emission from CO lines arising from states with rotational quantum numbers J > 1. Converting these observations to an estimate of the CO J=1-0 intensity, and thus inferring H2 gas masses, requires knowledge of the CO excitation ladder, or spectral line energy distribution (SLED). The few available multi-J CO observations of galaxies show a very broad range of SLEDs, even at fixed galaxy mass and star formation rate, making the conversion to J=1-0 emission and hence molecular gas mass highly uncertain. Here, we combine numerical simulations of disk galaxies and galaxy mergers with molecular line radiative transfer calculations to develop a model for the physical parameters that drive variations in CO SLEDs in galaxies. An essential feature of our model is a fully self-consistent computation of the molecular gas temperature and excitation structure. We find that, while the shape of the SLED is ultimately determined by difficult-to-observe quantities such as the gas density, temperature, and optical depth distributions, all of these quantities are well-correlated with the galaxy's mean star formation rate surface density (Sigma_SFR), which is observable. We use this result to develop a model for the CO SLED in terms of Sigma_SFR, and show that this model quantitatively reproduces the SLEDs of galaxies over a dynamic range of ~200 in SFR surface density, at redshifts from z=0-6. This model should make it possible to significantly reduce the uncertainty in deducing molecular gas masses from observations of high-J CO emission.
    Monthly Notices of the Royal Astronomical Society 01/2014; 442(2). DOI:10.1093/mnras/stu834 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stars do not generally form in isolation. Instead, they form in clusters, and in these clustered environments newborn stars can have profound effects on one another and on their parent gas clouds. Feedback from clustered stars is almost certainly responsible for a number of otherwise puzzling facts about star formation: that it is an inefficient process that proceeds slowly when averaged over galactic scales; that most stars disperse from their birth sites and dissolve into the galactic field over timescales $\ll 1$ Gyr; and that newborn stars follow an initial mass function (IMF) with a distinct peak in the range $0.1 - 1$ $M_\odot$, rather than an IMF dominated by brown dwarfs. In this review we summarize current observational constraints and theoretical models for the complex interplay between clustered star formation and feedback.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Giant molecular clouds (GMCs) are the primary reservoirs of cold, star-forming molecular gas in the Milky Way and similar galaxies, and thus any understanding of star formation must encompass a model for GMC formation, evolution, and destruction. These models are necessarily constrained by measurements of interstellar molecular and atomic gas, and the emergent, newborn stars. Both observations and theory have undergone great advances in recent years, the latter driven largely by improved numerical simulations, and the former by the advent of large-scale surveys with new telescopes and instruments. This chapter offers a thorough review of the current state of the field.

Publication Stats

4k Citations
769.69 Total Impact Points

Institutions

  • 2007–2015
    • University of California, Santa Cruz
      • Department of Astronomy and Astrophysics
      Santa Cruz, California, United States
  • 2013
    • Massachusetts Institute of Technology
      Cambridge, Massachusetts, United States
  • 2012
    • Stanford University
      • Kavli Institute for Particle Physics and Cosmology (KIPAC)
      Palo Alto, California, United States
  • 2003–2012
    • University of California, Berkeley
      • • Department of Astronomy
      • • Department of Physics
      Berkeley, California, United States
  • 2011
    • Catholic University of the Most Holy Conception
      Ciudad de Concepcion, Biobío, Chile
    • Lawrence Livermore National Laboratory
      Livermore, California, United States
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
    • University of Zurich
      Zürich, Zurich, Switzerland
  • 2005–2009
    • Princeton University
      • Department of Astrophysical Sciences
      Princeton, New Jersey, United States