M Solimena

German Diabetes Center, Düsseldorf, North Rhine-Westphalia, Germany

Are you M Solimena?

Claim your profile

Publications (109)1021.16 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies on the cellular function of the pancreas are typically performed in vitro on its isolated functional units, the endocrine islets of Langerhans and the exocrine acini. However, these approaches are hampered by preparation-induced changes of cell physiology and the lack of an intact surrounding. We present here a detailed protocol for the preparation of pancreas tissue slices. This procedure is less damaging to the tissue and faster than alternative approaches, and it enables the in situ study of pancreatic endocrine and exocrine cell physiology in a conserved environment. Pancreas tissue slices facilitate the investigation of cellular mechanisms underlying the function, pathology and interaction of the endocrine and exocrine components of the pancreas. We provide examples for several experimental applications of pancreas tissue slices to study various aspects of pancreas cell biology. Furthermore, we describe the preparation of human and porcine pancreas tissue slices for the validation and translation of research findings obtained in the mouse model. Preparation of pancreas tissue slices according to the protocol described here takes less than 45 min from tissue preparation to receipt of the first slices.
    Nature Protocols 12/2014; 9(12):2809-22. · 7.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: IntroductionPancreatic islet transplantation is currently restricted to patients with critical metabolic lability due to long-term need for immunosuppression and a persistent shortage of donor organs [1–3]. To overcome these obstacles we have developed a strategy for islet macroencapsulation that provides sufficient immune-isolation whereas regulated islet graft function is maintained [4–8].Case Report and MethodsA 63 year old patient with type 1 diabetes and severe metabolic lability was transplanted with isolated islets (2,000 islets/kgBW) encapsulated in an oxygenated chamber system composed of immune-isolating alginate and polymembrane covers. Via a small abdominal incision, a pre-peritoneal pocket for the chamber was dissected, connected oxygen ports were implanted subcutaneously. No immunosuppressive therapy was applied.ResultsThe procedure was surgically straightforward and without complications. We could demonstrate persistent graft function by detection of endogenous insulin and c-peptide secretion proving islet viability and function. This observation was accompanied by persistent lowering in HbA1c despite reduction in insulin requirement.For oxygenation of the non-vascularized and therefore immune-shielded islet graft, the chamber-integrated gas reservoir was replenished daily via the implanted ports without complications.Conclusion This encapsulation strategy was for the first time applied to allogeneic human islet transplantation in man. We demonstrated a persistent graft function with regulated insulin secretion without any immunosuppressive therapy. This novel concept may allow for future widespread application for cell-based therapies.References[1] 2007 update on allogeneic islet transplantation from the Collaborative Islet Transplant Registry (CITR). Cell Transplant 2009; 18: 753–767.[2] Ludwig, B., Ludwig, S., Steffen, A., Saeger, H.D., Bornstein, S.R. Islet versus pancreas transplantation in type 1 diabetes: competitive or complementary? Curr Diab Rep 2010; 10: 506–511.[3] Mccall, M., James Shapiro, A.M. Update on islet transplantation. Cold Spring Harb Perspect Med 2012; 2: a007823.[4] Barkai, U., Weir G.C., Colton C.K. et al. Enhanced Oxygen Supply Improves Islet Viability in a New Bioartificial Pancreas. Cell Transplant 2013; 22(8): 1463–1476[5] Ludwig, B., Rotem A., Schmid J. et al. Improvement of islet function in a bioartificial pancreas by enhanced oxygen supply and growth hormone releasing hormone agonist. Proc Natl Acad Sci U S A 2012; 109: 5022–5027.[6] Ludwig, B., Zimmermann B., Steffen A. et al. A novel device for islet transplantation providing immune protection and oxygen supply. Horm Metab Res 2010; 42: 918–922.[7] Neufeld, T., Ludwig B., Barkai U. et al. The efficacy of an immunoisolating membrane system for islet xenotransplantation in minipigs. PLoS One 2013; 8: e70150.[8] Ludwig, B., Reichel A, Steffen A et al. Transplantation of human islets without immunosuppression. PNAS 2013; 110: 19054–19058.
    Xenotransplantation 03/2014; 21(2). · 2.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucose and GLP-1 stimulate not only insulin secretion, but also the post-transcriptional induction of insulin granule biogenesis. This process involves the nucleocytoplasmic translocation of the RNA binding protein PTBP1. Binding of PTBP1 to the 3’-UTRs of mRNAs for insulin and other cargoes of beta cell granules increases their stability. Here we show that glucose enhances also the binding of PTBP1 to the 5’-UTRs of these transcripts, which display IRES activity, and their translation exclusively in a cap-independent fashion. Accordingly, glucose-induced biosynthesis of granule cargoes was unaffected by pharmacological, genetic or Coxsackievirus-mediated inhibition of cap-dependent translation. Infection with Coxsackieviruses, which also depend on PTBP1 for their own cap-independent translation, reduced instead granule stores and insulin release. These findings provide insight into the mechanism for glucose induction of insulin granule production and on how Coxsackieviruses, which have been implicated in the pathogenesis of type 1 diabetes, can foster beta cell failure.
    Molecular Metabolism. 01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transplantation of pancreatic islets is emerging as a successful treatment for type-1 diabetes. Its current stringent restriction to patients with critical metabolic lability is justified by the long-term need for immunosuppression and a persistent shortage of donor organs. We developed an oxygenated chamber system composed of immune-isolating alginate and polymembrane covers that allows for survival and function of islets without immunosuppression. A patient with type-1 diabetes received a transplanted chamber and was followed for 10 mo. Persistent graft function in this chamber system was demonstrated, with regulated insulin secretion and preservation of islet morphology and function without any immunosuppressive therapy. This approach may allow for future widespread application of cell-based therapies.
    Proceedings of the National Academy of Sciences 10/2013; · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Obese adipose tissue (AT) inflammation contributes critically to development of insulin resistance. The complement anaphylatoxin C5a receptor (C5aR) has been implicated in inflammatory processes and as regulator of macrophage activation and polarization. However, the role of C5aR in obesity and AT inflammation has not been addressed. We engaged the model of diet-induced obesity and found that expression of C5aR was significantly upregulated in the obese AT, compared with lean AT. In addition, C5a was present in obese AT in the proximity of macrophage-rich crownlike structures. C5aR-sufficient and -deficient mice were fed a high-fat diet (HFD) or a normal diet (ND). C5aR deficiency was associated with increased AT weight upon ND feeding in males, but not in females, and with increased adipocyte size upon ND and HFD conditions in males. However, obese C5aR(-/-) mice displayed improved systemic and AT insulin sensitivity. Improved AT insulin sensitivity in C5aR(-/-) mice was associated with reduced accumulation of total and proinflammatory M1 macrophages in the obese AT, increased expression of IL-10, and decreased AT fibrosis. In contrast, no difference in β cell mass was observed owing to C5aR deficiency under an HFD. These results suggest that C5aR contributes to macrophage accumulation and M1 polarization in the obese AT and thereby to AT dysfunction and development of AT insulin resistance.
    The Journal of Immunology 09/2013; · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insulin is stored within the secretory granules of pancreatic beta cells and impairment of its release is the hallmark of type 2 diabetes. Preferential exocytosis of newly synthesized insulin suggests that granule aging is a key factor influencing insulin secretion. Here we illustrate a technology that enables the study of granule aging in insulinoma cells and beta cells of knock-in mice through the conditional and unequivocal labeling of insulin fused to the SNAP tag. This approach, which overcomes the limits encountered with previous strategies based on radiolabeling or fluorescence timer proteins, allowed us to formally demonstrate the preferential release of newly-synthesized insulin and reveal that the motility of cortical granules significantly changes over time. Exploitation of this approach may enable the identification of molecular signatures associated with granule aging and unravel possible alterations of granule turnover in diabetic beta cells. Furthermore, the method is of general interest for the study of membrane traffic and aging.
    Diabetes 08/2013; · 7.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: AIMS/HYPOTHESIS: Immunosuppressive drugs used in human islet transplantation interfere with the balance between beta cell renewal and death, and thus may contribute to progressive graft dysfunction. We analysed the influence of immunosuppressants on the proliferation of transplanted alpha and beta cells after syngeneic islet transplantation in streptozotocin-induced diabetic mice. METHODS: C57BL/6 diabetic mice were transplanted with syngeneic islets in the liver and simultaneously abdominally implanted with a mini-osmotic pump delivering BrdU alone or together with an immunosuppressant (tacrolimus, sirolimus, everolimus or mycophenolate mofetil [MMF]). Glycaemic control was assessed for 4 weeks. The area and proliferation of transplanted alpha and beta cells were subsequently quantified. RESULTS: After 4 weeks, glycaemia was significantly higher in treated mice than in controls. Insulinaemia was significantly lower in mice treated with everolimus, tacrolimus and sirolimus. MMF was the only immunosuppressant that did not significantly reduce beta cell area or proliferation, albeit its levels were in a lower range than those used in clinical settings. CONCLUSIONS/INTERPRETATION: After transplantation in diabetic mice, syngeneic beta cells have a strong capacity for self-renewal. In contrast to other immunosuppressants, MMF neither impaired beta cell proliferation nor adversely affected the fractional beta cell area. Although human beta cells are less prone to proliferate compared with rodent beta cells, the use of MMF may improve the long-term outcome of islet transplantation.
    Diabetologia 03/2013; · 6.49 Impact Factor
  • Source
    Maria Grazia Magro, Michele Solimena
    [Show abstract] [Hide abstract]
    ABSTRACT: β-cells of the pancreatic islets are highly specialized and high-throughput units for the production of insulin, the key hormone for maintenance of glucose homeostasis. Elevation of extracellular glucose and/or GLP-1 levels triggers a rapid upregulation of insulin biosynthesis through the activation of post-transcriptional mechanisms. RNA-binding proteins are emerging as key factors in the regulation of these mechanisms as well as in other aspects of β-cell function and glucose homeostasis at large, and thus may be implicated in the pathogenesis of diabetes. Here we review current research in the field, with a major emphasis on RNA-binding proteins that control biosynthesis of insulin and other components of the insulin secretory granules by modulating the stability and translation of their mRNAs.
    Molecular metabolism. 01/2013; 2(4):348-355.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Laser microdissection (LMD) is a technique that allows the recovery of selected cells and tissues from minute amounts of parenchyma (1,2). The dissected cells can be used for a variety of investigations, such as transcriptomic or proteomic studies, DNA assessment or chromosomal analysis (2,3). An especially challenging application of LMD is transcriptome analysis, which, due to the lability of RNA (4), can be particularly prominent when cells are dissected from tissues that are rich of RNases, such as the pancreas. A microdissection protocol that enables fast identification and collection of target cells is essential in this setting in order to shorten the tissue handling time and, consequently, to ensure RNA preservation. Here we describe a protocol for acquiring human pancreatic beta cells from surgical specimens to be used for transcriptomic studies (5). Small pieces of pancreas of about 0.5-1 cm(3) were cut from the healthy appearing margins of resected pancreas specimens, embedded in Tissue-Tek O.C.T. Compound, immediately frozen in chilled 2-Methylbutane, and stored at -80 °C until sectioning. Forty serial sections of 10 μm thickness were cut on a cryostat under a -20 °C setting, transferred individually to glass slides, dried inside the cryostat for 1-2 min, and stored at -80 °C. Immediately before the laser microdissection procedure, sections were fixed in ice cold, freshly prepared 70% ethanol for 30 sec, washed by 5-6 dips in ice cold DEPC-treated water, and dehydrated by two one-minute incubations in ice cold 100% ethanol followed by xylene (which is used for tissue dehydration) for 4 min; tissue sections were then air-dried afterwards for 3-5 min. Importantly, all steps, except the incubation in xylene, were performed using ice-cold reagents - a modification over a previously described protocol (6). utilization of ice cold reagents resulted in a pronounced increase of the intrinsic autofluorescence of beta cells, and facilitated their recognition. For microdissection, four sections were dehydrated each time: two were placed into a foil-wrapped 50 ml tube, to protect the tissue from moisture and bleaching; the remaining two were immediately microdissected. This procedure was performed using a PALM MicroBeam instrument (Zeiss) employing the Auto Laser Pressure Catapulting (AutoLPC) mode. The completion of beta cell/islet dissection from four cryosections required no longer than 40-60 min. Cells were collected into one AdhesiveCap and lysed with 10 μl lysis buffer. Each single RNA specimen for transcriptomic analysis was obtained by combining 10 cell microdissected samples, followed by RNA extraction using the Pico Pure RNA Isolation Kit (Arcturus). This protocol improves the intrinsic autofluorescence of human beta cells, thus facilitating their rapid and accurate recognition and collection. Further improvement of this procedure could enable the dissection of phenotypically different beta cells, with possible implications for better understanding the changes associated with type 2 diabetes.
    Journal of Visualized Experiments 01/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies have led to the identification of numerous susceptibility genes for Type 2 Diabetes. Among them is CDKAL1, which is associated with reduced β-cell function and insulin release. Recently, CDKAL1 has been shown to be a methylthiotransferase that modifies tRNA-Lys to enhance translational fidelity of transcripts, including the one encoding proinsulin. Here we report that out of several CDKAL1 isoforms deposited in public databases, only isoform 1, which migrates as a 61 kDa protein by SDS-PAGE, is expressed in human islets and pancreatic insulinoma INS-1 and MIN6 cells. We show that CDKAL1 is a novel member of the tail-anchored protein family and exploits the TCR40/Get3 assisted pathway for insertion of its C-terminal transmembrane domain into the endoplasmic reticulum. Using EndoH and PNGase F sensitivity assays on CDKAL1 constructs carrying a N-glycosylation site within the luminal domain, we further established that CDKAL1 is an ER-resident protein. Moreover, we observed that silencing CDKAL1 in INS-1 cells reduces the expression of secretory granule proteins proChromogranin A and proICA512/ ICA512-TMF, in addition to proinsulin and insulin. This correlated with reduced glucose-stimulated insulin secretion. Taken together, our findings provide new insight into the role of CDKAL1 in insulin-producing cells, and help to understand its involvement in the pathogenesis of diabetes.
    Journal of Biological Chemistry 10/2012; · 4.65 Impact Factor
  • Source
    Ronald Dirkx Jr, Michele Solimena
    [Show abstract] [Hide abstract]
    ABSTRACT: The failure of pancreatic β-cells to supply insulin in quantities sufficient to maintain euglycemia is a hallmark of type 2 diabetes. Perturbation of β-cell cholesterol homeostasis, culminating in elevated intracellular cholesterol levels, impairs insulin secretion and has therefore been proposed as a mechanism contributing to β-cell dysfunction. The manner in which this occurs, however, is unclear. Cholesterol is an essential lipid, as well as a major component of membrane rafts, and numerous proteins critical for the regulation of insulin secretion have been reported to associate with these domains. Although this suggests that alterations in membrane rafts could partially account for the reduction in insulin secretion observed when β-cell cholesterol accumulates, this has not yet been demonstrated. In this review, we provide a brief overview of recent work implicating membrane rafts in some of the basic molecular mechanisms of insulin secretion, and discuss the insight it provides into the β-cell dysfunction characteristic of type 2 diabetes. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2012.00200.x, 2012).
    Journal of diabetes investigation. 08/2012; 3(4):339-346.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Knowledge of number, size and content of insulin secretory granules is pivotal for understanding the physiology of pancreatic beta cells. Here we re-evaluated key structural features of rat beta cells, including insulin granule size, number and distribution as well as cell size. Electron micrographs of rat beta cells fixed either chemically or by high-pressure freezing were compared using a high-content analysis approach. These data were used to develop three-dimensional in silico beta cell models, the slicing of which would reproduce the experimental datasets. As previously reported, chemically fixed insulin secretory granules appeared as hollow spheres with a mean diameter of ∼350 nm. Remarkably, most granules fixed by high-pressure freezing lacked the characteristic halo between the dense core and the limiting membrane and were smaller than their chemically fixed counterparts. Based on our analyses, we conclude that the mean diameter of rat insulin secretory granules is 243 nm, corresponding to a surface area of 0.19 μm(2). Rat beta cells have a mean volume of 763 μm(3) and contain 5,000-6,000 granules. A major reason for the lower mean granule number/rat beta cell relative to previous accounts is a reduced estimation of the mean beta cell volume. These findings imply that each granule contains about twofold more insulin, while its exocytosis increases membrane capacitance about twofold less than assumed previously. Our integrated approach defines new standards for quantitative image analysis of beta cells and could be applied to other cellular systems.
    Diabetologia 04/2012; 55(4):1013-23. · 6.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ICA69 (islet cell autoantigen 69 kDa) is a protein implicated in type 1 diabetes mellitus in both the non-obese diabetic (NOD) mouse model and humans. ICA69 is encoded by the Ica1 gene on mouse chromosome 6 A1-A2. We previously reported reduced ICA69 expression in the thymus of NOD mice compared with thymus of several non-diabetic mouse strains. We propose that reduced thymic ICA69 expression could result from variations in transcriptional regulation of the gene and that polymorphisms within the Ica1 core promoter may partially determine this transcriptional variability. We characterized the functional promoter of Ica1 in NOD mice and compared it with the corresponding portions of Ica1 in non-diabetic C57BL/6 mice. Luciferase reporter constructs demonstrated that the NOD Ica1 promoter region exhibited markedly reduced luciferase expression in transiently transfected medullary thymus epithelial (mTEC(+)) and B-cell (M12)-derived cell lines. However, in a non-diabetic strain, C57BL/6, the Ica1 promoter region was transcriptionally active when transiently transfected into the same cell lines. We concomitantly identified five single nucleotide polymorphisms within the NOD Ica1 promoter. One of these single nucleotide polymorphisms increases the binding affinity for the transcription factor AIRE (autoimmune regulator), which is highly expressed in thymic epithelial cells, where it is known to play a key role regulating self-antigen expression. We conclude that polymorphisms within the NOD Ica1 core promoter may determine AIRE-mediated down-regulation of ICA69 expression in medullary thymic epithelial cells, thus providing a novel mechanistic explanation for the loss of immunologic tolerance to this self-antigen in autoimmunity.
    Journal of Biological Chemistry 03/2012; 287(21):17882-93. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polypyrimidine tract-binding protein 1 (PTBP1) promotes stability and translation of mRNAs coding for insulin secretion granule proteins and thereby plays a role in β-cells function. We studied whether common genetic variations within the PTBP1 locus influence insulin secretion, and/or proinsulin conversion. We genotyped 1,502 healthy German subjects for four tagging single nucleotide polymorphisms (SNPs) within the PTBP1 locus (rs351974, rs11085226, rs736926, and rs123698) covering 100% of genetic variation with an r(2)≥0.8. The subjects were metabolically characterized by an oral glucose tolerance test with insulin, proinsulin, and C-peptide measurements. A subgroup of 320 subjects also underwent an IVGTT. PTBP1 SNP rs11085226 was nominally associated with lower insulinogenic index and lower cleared insulin response in the OGTT (p≤0.04). The other tested SNPs did not show any association with the analyzed OGTT-derived secretion parameters. In the IVGTT subgroup, SNP rs11085226 was accordingly associated with lower insulin levels within the first ten minutes following glucose injection (p = 0.0103). Furthermore, SNP rs351974 was associated with insulin levels in the IVGTT (p = 0.0108). Upon interrogation of MAGIC HOMA-B data, our rs11085226 result was replicated (MAGIC p = 0.018), but the rs351974 was not. We conclude that common genetic variation in PTBP1 influences glucose-stimulated insulin secretion. This underlines the importance of PTBP1 for beta cell function in vivo.
    PLoS ONE 01/2012; 7(10):e46154. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The size composition of human islet preparations has been attributed to functional potency, islet survival and transplantation outcomes. In the early post-transplantation phase islets are supplied with oxygen by diffusion only and are at risk of critical hypoxia. The high rate of early islet graft dysfunction is in part attributed to this condition. It has been presumed that islets with smaller diameter, and therefore smaller diffusion distance, are superior to large islets regarding early survival rate and graft function. In this study we aimed to evaluate Complex Object Parametric Analysis and Sorting (COPAS) as a device for automated sorting of human islets. The use of COPAS was validated for accuracy and sensitivity using polystyrene beads of known diameters. Based on time of flight relative to particle isolated islets were then automatically sorted and analyzed for viability and function using handpicked islets as control. Our results suggest that COPAS enables the automated and accurate sorting of islets with no negative impact on their integrity and viability. Thus, COPAS is an adequate tool for size-specific analysis of pancreatic islets and may be considered as part of a platform for automated high-throughput screening of pancreatic islets.
    Islets 09/2011; 3(5):267-70. · 1.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anxiety is a heterogeneous behavioral domain playing a role in a variety of neuropsychiatric diseases. While anxiety is the cardinal symptom in disorders such as panic disorder, co-morbid anxious behavior can occur in a variety of diseases. Stiff person syndrome (SPS) is a CNS disorder characterized by increased muscle tone and prominent agoraphobia and anxiety. Most patients have high-titer antibodies against glutamate decarboxylase (GAD) 65. The pathogenic role of these autoantibodies is unclear. We re-investigated a 53 year old woman with SPS and profound anxiety for GABA-A receptor binding in the amygdala with (11)C-flumazenil PET scan and studied the potential pathogenic role of purified IgG from her plasma filtrates containing high-titer antibodies against GAD 65. We passively transferred the IgG fraction intrathecally into rats and analyzed the effects using behavioral and in vivo electrophysiological methods. In cell culture, we measured the effect of patient IgG on GABA release from hippocampal neurons. Repetitive intrathecal application of purified patient IgG in rats resulted in an anxious phenotype resembling the core symptoms of the patient. Patient IgG selectively bound to rat amygdala, hippocampus, and frontal cortical areas. In cultured rat hippocampal neurons, patient IgG inhibited GABA release. In line with these experimental results, the GABA-A receptor binding potential was reduced in the patient's amygdala/hippocampus complex. No motor abnormalities were found in recipient rats. The observations in rats after passive transfer lead us to propose that anxiety-like behavior can be induced in rats by passive transfer of IgG from a SPS patient positive for anti-GAD 65 antibodies. Anxiety, in this case, thus may be an antibody-mediated phenomenon with consecutive disturbance of GABAergic signaling in the amygdala region.
    PLoS ONE 02/2011; 6(2):e16775. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures.
    PLoS ONE 01/2011; 6(2):e16992. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Investigations into the pathogenesis of type 2 diabetes and islets of Langerhans malfunction (1) have been hampered by the limited availability of type 2 diabetic islets from organ donors(2). Here we share our protocol for isolating islets from human pancreatic tissue obtained from type 2 diabetic and non-diabetic patients who have undergone partial pancreatectomy due to different pancreatic diseases (benign or malignant pancreatic tumors, chronic pancreatitis, and common bile duct or duodenal tumors). All patients involved gave their consent to this study, which had also been approved by the local ethics committee. The surgical specimens were immediately delivered to the pathologist who selected soft and healthy appearing pancreatic tissue for islet isolation, retaining the damaged tissue for diagnostic purposes. We found that to isolate more than 1,000 islets, we had to begin with at least 2 g of pancreatic tissue. Also essential to our protocol was to visibly distend the tissue when injecting the enzyme-containing media and subsequently mince it to aid digestion by increasing the surface area. To extend the applicability of our protocol to include the occasional case in which a large amount (>15g) of human pancreatic tissue is available , we used a Ricordi chamber (50 ml) to digest the tissue. During digestion, we manually shook the Ricordi chamber(3) at an intensity that varied by specimen according to its level of tissue fibrosis. A discontinous Ficoll gradient was then used to separate the islets from acinar tissue. We noted that the tissue pellet should be small enough to be homogenously resuspended in Ficoll medium with a density of 1.125 g/ml. After isolation, we cultured the islets under stress free conditions (no shaking or rotation) with 5% CO(2;) at 37 °C for at least 48 h in order to facilitate their functional recovery. Widespread application of our protocol and its future improvement could enable the timely harvesting of large quantities of human islets from diabetic and clinically matched non-diabetic subjects, greatly advancing type 2 diabetes research.
    Journal of Visualized Experiments 01/2011;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ICA512 (or IA-2) is a transmembrane protein-tyrosine phosphatase located in secretory granules of neuroendocrine cells. Initially, it was identified as one of the main antigens of autoimmune diabetes. Later, it was found that during insulin secretion, the cytoplasmic domain of ICA512 is cleaved and relocated to the nucleus, where it stimulates the transcription of the insulin gene. The role of the other parts of the receptor in insulin secretion is yet to be unveiled. The structures of the intracellular pseudocatalytic and mature extracellular domains are known, but the transmembrane domain and several intracellular and extracellular parts of the receptor are poorly characterized. Moreover the overall structure of the receptor remains to be established. We started to address this issue studying by X-ray crystallography the structure of the mature ectodomain of ICA512 (ME ICA512) and variants thereof. The variants and crystallization conditions were chosen with the purpose of exploring putative association interfaces, metal binding sites and all other structural details that might help, in subsequent works, to build a model of the entire receptor. Several structural features were clarified and three main different association modes of ME ICA512 were identified. The results provide essential pieces of information for the design of new experiments aimed to assess the structure in vivo.
    PLoS ONE 01/2011; 6(9):e24191. · 3.53 Impact Factor
  • Jakob Suckale, Michele Solimena
    [Show abstract] [Hide abstract]
    ABSTRACT: The insulin granule was previously thought of as merely a container, but accumulating evidence suggests that it also acts as a signaling node. Regulatory pathways intersect at but also originate from the insulin granule membrane. Examples include the small G-proteins Rab3a and Rab27a, which influence granule movement, and the transmembrane proteins (tyrosine phosphatase receptors type N) PTPRN and PTPRN2, which upregulate β-cell transcription and proliferation. In addition, many cosecreted compounds possess regulatory functions, often related to energy metabolism. For instance, ATP and γ-amino butyric acid (GABA) modulate insulin and glucagon secretion, respectively; C-peptide protects β-cells and kidney cells; and amylin reduces gastric emptying and food intake via the brain. In this paper, we review the current knowledge of the insulin granule proteome and discuss its regulatory functions.
    Trends in Endocrinology and Metabolism 10/2010; 21(10):599-609. · 8.90 Impact Factor

Publication Stats

5k Citations
1,021.16 Total Impact Points

Institutions

  • 2014
    • German Diabetes Center
      Düsseldorf, North Rhine-Westphalia, Germany
  • 2012–2013
    • Max Planck Institute of Molecular Cell Biology and Genetics
      Dresden, Saxony, Germany
    • University of Tuebingen
      • Department of Internal Medicine
      Tübingen, Baden-Wuerttemberg, Germany
  • 2003–2012
    • Technische Universität Dresden
      • • Molekulare Diabetologie
      • • Center for Internal Medicine
      Dresden, Saxony, Germany
  • 2010
    • Carl Gustav Carus-Institut
      Pforzheim, Baden-Württemberg, Germany
  • 2005
    • Johns Hopkins Medicine
      • Department of Neurology
      Baltimore, MD, United States
  • 2004
    • Humboldt-Universität zu Berlin
      Berlín, Berlin, Germany
  • 1990–2001
    • Yale University
      • • Department of Internal Medicine
      • • Department of Cell Biology
      New Haven, CT, United States
    • University of California, San Francisco
      • Department of Microbiology and Immunology
      San Francisco, California, United States
  • 1993–2000
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
  • 1991–1999
    • Yale-New Haven Hospital
      New Haven, Connecticut, United States
    • Cleveland Clinic
      • Neurological Institute
      Cleveland, OH, United States
  • 1998
    • Nagoya Second Red Cross Hospital
      Nagoya, Aichi, Japan
  • 1994–1995
    • Universität Heidelberg
      • • Neurological Clinic
      • • Abteilung Klinische Neurobiologie
      Heidelberg, Baden-Wuerttemberg, Germany
    • University of Miami Miller School of Medicine
      • Diabetes Research Institute (DRI)
      Miami, Florida, United States
  • 1988
    • National Research Council
      Roma, Latium, Italy