M Richardson

Fundação Ezequiel Dias, Camelleira, Pernambuco, Brazil

Are you M Richardson?

Claim your profile

Publications (14)29.27 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemical analyses of the hemagglutinating fraction from Scorpaena plumieri venom revealed that it contains five components (Sp-CL 1-5) with similar chromatographic elution profiles (35-38% of acetonitrile), molecular masses (16,800-17,000 Da) and N-terminal sequences, suggesting that they are isoforms of the same protein. The amino acid sequence of Sp-CL4 was determined and shown to have homology with fish C-type lectins. These data demonstrate for the first time the presence of C-type isolectins in a scorpionfish venom. Copyright © 2015. Published by Elsevier Ltd.
    Toxicon 01/2015; 95. DOI:10.1016/j.toxicon.2015.01.004 · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PnTx3-4 is a toxin isolated from the venom of the spider Phoneutria nigriventer that blocks N-, P/Q-, and R-type voltage-gated calcium channels and has great potential for clinical applications. In this report we used the SUMO system to express large amounts of recombinant PnTx3-4 peptide, which was found in both soluble and insoluble fractions of bacterial extracts. We purified the recombinant toxin from both fractions and showed that the recombinant peptide showed biological activity similar to the native PnTx3-4. In silico analysis of the primary sequence of PnTx3-4 indicated that the peptide conforms to all the criteria of a knottin scaffold. Additionally, circular dichroism spectrum analysis of the recombinant PnTx3-4 predicted that the toxin structure is composed of approximately 53% turns/unordered, 31% α-helix and 16% β-strand, which is consistent with predicted model of the PnTx3-4 knottin scaffold available at the knottin database (http://knottin.cbs.cnrs.fr). These studies provide the basis for future large scale production and structure-function investigation of PnTx3-4.
    Toxicon 05/2012; 60(5):907-18. DOI:10.1016/j.toxicon.2012.05.026 · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Erectile dysfunction (ED) mechanisms in diabetic patients are multifactorial and often lead to resistance to current therapy. Animal toxins have been used as pharmacological tools to study penile erection. Human accidents involving the venom of Phoneutria nigriventer spider are characterized by priapism. We hypothesize that PnTx2-6 potentiates cavernosal relaxation in diabetic mice by increasing cyclic guanosine monophosphate (cGMP). This effect is neuronal nitric oxide synthase (nNOS) dependent. Cavernosal strips were contracted with phenylephrine (10(-5) M) and relaxed by electrical field stimulation (20 V, 1-32 Hz) in the presence or absence of PnTx2-6 (10(-8) M). Cavernosal strips from nNOS- and endothelial nitric oxide synthase (eNOS)-knockout (KO) mice, besides nNOS inhibitor (10(-5) M), were used to evaluate the role of this enzyme in the potentiation effect evoked by PnTx2-6. Tissue cGMP levels were determined after stimulation with PnTx2-6 in presence or absence of N-nitro-L-arginine methyl ester (L-NAME) (10(-4) M) and ω-conotoxin GVIA (10(-6) M), an N-type calcium channel inhibitor. Results showed that PnTx2-6 enhanced cavernosal relaxation in diabetic mice (65%) and eNOS KO mice, but not in nNOS KO mice. The toxin effect in the cavernosal relaxation was abolished by nNOS inhibitor. cGMP levels are increased by PnTx2-6, however, L-NAME abolished this enhancement as well as ω-conotoxin GVIA. We conclude that PnTx2-6 facilitates penile relaxation in diabetic mice through a mechanism dependent on nNOS, probably via increasing nitric oxide/cGMP production.
    International journal of impotence research 10/2011; 24(2):69-76. DOI:10.1038/ijir.2011.47 · 1.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Erectile dysfunction (ED) mechanisms in diabetic patients are multifactorial and often lead to resistance to current therapy. Animal toxins have been used as pharmacological tools to study penile erection. Human accidents involving the venom of Phoneutria nigriventer spider are characterized by priapism. We hypothesize that PnTx2-6 potentiates cavernosal relaxation in diabetic mice by increasing cyclic guanosine monophosphate (cGMP). This effect is neuronal nitric oxide synthase (nNOS) dependent. Cavernosal strips were contracted with phenylephrine (10(-5) M) and relaxed by electrical field stimulation (20 V, 1-32 Hz) in the presence or absence of PnTx2-6 (10(-8) M). Cavernosal strips from nNOS- and endothelial nitric oxide synthase (eNOS)-knockout (KO) mice, besides nNOS inhibitor (10(-5) M), were used to evaluate the role of this enzyme in the potentiation effect evoked by PnTx2-6. Tissue cGMP levels were determined after stimulation with PnTx2-6 in presence or absence of N-nitro-L-arginine methyl ester (L-NAME) (10(-4) M) and ω-conotoxin GVIA (10(-6) M), an N-type calcium channel inhibitor. Results showed that PnTx2-6 enhanced cavernosal relaxation in diabetic mice (65%) and eNOS KO mice, but not in nNOS KO mice. The toxin effect in the cavernosal relaxation was abolished by nNOS inhibitor. cGMP levels are increased by PnTx2-6, however, L-NAME abolished this enhancement as well as ω-conotoxin GVIA. We conclude that PnTx2-6 facilitates penile relaxation in diabetic mice through a mechanism dependent on nNOS, probably via increasing nitric oxide/cGMP production.
    International Journal of Impotence Research 10/2011; 24(2):69-76. · 1.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phα1β is a potent toxin obtained from the spider Phoneutria nigriventer that blocks neuronal voltage-sensitive Ca2+ channels. This study compared the antiallodynic effects of Phα1β, ω-conotoxin MVIIA and morphine in mice and their side effects in rats. Mechanical allodynia was measured in mice receiving single intrathecal administration of Phα1β, ω-conotoxin MVIIA or morphine before or after the incisional plantar procedure. The effect of the treatments on cardiovascular profile and global neurological were evaluated in rats. The expression of pro or anti-inflammatory cytokines of human polymorph mononuclear cells was also evaluated. Preemptive use of ω-conotoxin MVIIA (1.0 or 10 pmol/site) or morphine (1000 pmol/site) induced shorter antiallodynic effect than Phα1β (100 pmol/site) in mice. Post-incision administration of Phα1β (200 pmol/site) induced longer mechanical antiallodynic effect than ω-conotoxin MVIIA (1.0 or 10 pmol/site) or morphine (1000 pmol/site). Intrathecal injection of Phα1β (200 pmol/site) and morphine (433 pmol/site) did not change while ω-conotoxin MVIIA (100 pmol/site) increased the heart rate in rats 3 h after its administration. Phα1β (200 pmol/site), ω-conotoxin MVIIA (100 pmol/site) and morphine (433 pmol/site) did not change mean arterial pressure 0.5 and 3 h after their administration. The treatments did not alter neurological performance assessed by global neurological evaluation and open-field test. The tested drugs did not induced expression of pro or anti-inflammatory cytokines in CD4 monocytes. In conclusion, preemptive administration Phα1β in mice induced longer antiallodynic effect than ω-conotoxin MVIIA and morphine. Phα1β also induced a longer mechanical antiallodynic effect than ω-conotoxin MVIIA and morphine when used after the surgical incision. The present results suggest that Phα1β has a potential application in the management of postoperative pain with low side effects.
    Toxicon 09/2011; 58(8):626-633. DOI:10.1016/j.toxicon.2011.09.008 · 2.58 Impact Factor
  • European Journal of Pain Supplements 09/2011; 5(1):26-26. DOI:10.1016/S1754-3207(11)70084-0
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies revealed that the venom of the Brazilian "armed" spider Phoneutria nigriventer contains potent neurotoxins that caused excitatory symptoms such as salivation, lachrymation, priapism, convulsions, flaccid and spastic paralysis. It was also reported that the main mechanism of action of those neurotoxins are effects on ion channels such as inhibition of the inactivation of Na+ channels, blockage of K+ channels and blockage of calcium channels. The venom from Phoneutria keyserlingi, as might be expected, contains a series of polypeptides that are very similar, but not identical, to the proteins previously obtained from the venom of P. nigriventer in terms of their amino acid sequences and biological activities. We evaluated the effects of some of the toxins of P. nigriventer and P. keyserlingi on glutamate release and the decrease in [Ca2+]i by using synaptosomes of rat brain cortices and fluorimetric assays. Sequence comparisons between the Phoneutria toxins of both the species showed great similarity in the location of cysteine residues. However, thus far, no pharmacological assays were performed to evaluate the extension of those biochemical modifications. Our results showed that differences between the amino acid sequences of Phoneutria toxins of both the species lead to the significant changes in the pharmacological properties of these toxins.
    Cellular and molecular biology (Noisy-le-Grand, France) 01/2010; 56 Suppl:OL1223-30. · 1.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The venom of the spider Phoneutria nigriventer contains several toxins that have bioactivity in mammals and insects. Accidents involving humans are characterized by various symptoms including penile erection. Here we investigated the action of Tx2-6, a toxin purified from the P. nigriventer spider venom that causes priapism in rats and mice. Erectile function was evaluated through changes in intracavernosal pressure/mean arterial pressure ratio (ICP/MAP) during electrical stimulation of the major pelvic ganglion (MPG) of normotensive and deoxycorticosterone-acetate (DOCA)-salt hypertensive rats. Nitric oxide (NO) release was detected in cavernosum slices with fluorescent dye (DAF-FM) and confocal microscopy. The effect of Tx2-6 was also characterized after intracavernosal injection of a non-selective nitric oxide synthase (NOS) inhibitor, L-NAME. Subcutaneous or intravenous injection of Tx2-6 potentiated the elevation of ICP/MAP induced by ganglionic stimulation. L-NAME inhibited penile erection and treatment with Tx2-6 was unable to reverse this inhibition. Tx2-6 treatment induced a significant increase of NO release in cavernosum tissue. Attenuated erectile function of DOCA-salt hypertensive rats was fully restored after toxin injection. Tx2-6 enhanced erectile function in normotensive and DOCA-salt hypertensive rats, via the NO pathway. Our studies suggest that Tx2-6 could be important for development of new pharmacological agents for treatment of erectile dysfunction.
    Toxicon 07/2008; 51(7):1197-206. DOI:10.1016/j.toxicon.2008.02.010 · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The venom of the spider Phoneutria nigriventer contains several toxins that have bioactivity in mammals and insects. Accidents involving humans are characterized by various symptoms including penile erection. Here we investigated the action of Tx2-6, a toxin purified from the P. nigriventer spider venom that causes priapism in rats and mice. Erectile function was evaluated through changes in intracavernosal pressure/mean arterial pressure ratio (ICP/MAP) during electrical stimulation of the major pelvic ganglion (MPG) of normotensive and deoxycorticosterone-acetate (DOCA)-salt hypertensive rats. Nitric oxide (NO) release was detected in cavernosum slices with fluorescent dye (DAF-FM) and confocal microscopy. The effect of Tx2-6 was also characterized after intracavernosal injection of a non-selective nitric oxide synthase (NOS) inhibitor, L-NAME. Subcutaneous or intravenous injection of Tx2-6 potentiated the elevation of ICP/MAP induced by ganglionic stimulation. L-NAME inhibited penile erection and treatment with Tx2-6 was unable to reverse this inhibition. Tx2-6 treatment induced a significant increase of NO release in cavernosum tissue. Attenuated erectile function of DOCA-salt hypertensive rats was fully restored after toxin injection. Tx2-6 enhanced erectile function in normotensive and DOCA-salt hypertensive rats, via the NO pathway. Our studies suggest that Tx2-6 could be important for development of new pharmacological agents for treatment of erectile dysfunction.
    Toxicon 02/2008; 51(7):1197-2006. DOI:10.1016/j.toxicon.2008.02.010. · 2.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A family of 4kDa neurotoxic peptides was purified from venoms of Phoneutria spiders. All have six cysteine residues, and low similarity with other neurotoxins. Three toxins caused moderate inhibition of L-type Ca(2+) channels. The structure of toxin PRTx27C3 was modeled and compared with toxin ADO1. The importance of four residues is suggested.
    Protein and Peptide Letters 02/2008; 15(7):700-8. DOI:10.2174/092986608785133708 · 1.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Various neurotoxins have been described from the venom of the Brazilian spider Phoneutria nigriventer, but little is known about the venoms of the other species of this genus. In the present work, we describe the purification and some structural and pharmacological features of a new toxin (PRTx3-7) from Phoneutria reidyi that causes flaccid paralysis in mice. The observed molecular mass (4627.26 Da) was in accordance with the calculated mass for the amidated form of the amino acid sequence (4627.08 Da). The presence of an alpha-amidated C-terminus was confirmed by MS/MS analysis of the C-terminal peptide, isolated after enzymatic digestion of the native protein with Glu-C endoproteinase. The purified protein was injected (intracerebro-ventricular) into mice at dose levels of 5 microg/mouse causing immediate agitation and clockwise gyration, followed by the gradual development of general flaccid paralysis. PRTx3-7 at 1 microM inhibited by 20% the KCl-induced increase on [Ca2+]i in rat brain synaptosomes. The HEK cells permanently expressing L, N, P/Q and R HVA Ca2+ channels were also used to better characterize the pharmacological features of PRTx3-7. To our surprise, PRTx3-7 shifted the voltage-dependence for activation towards hyperpolarized membrane potentials for L (-4 mV), P/Q (-8 mV) and R (-5 mV) type Ca2+ currents. In addition, the new toxin also affected the steady state of inactivation of L-, N- and P/Q-type Ca2+ currents.
    Cellular and Molecular Neurobiology 03/2007; 27(1):129-46. DOI:10.1007/s10571-006-9123-z · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arachnids have a venom apparatus and secrete a complex chemical mixture of low molecular mass organic molecules, enzymes and polypeptide neurotoxins designed to paralyze or kill their prey. Most of these toxins are specific for membrane voltage-gated sodium channels, although some may also target calcium or potassium channels and other membrane receptors. Scorpions and spiders have provided the greatest number of the neurotoxins studied so far, for which, a good number of primary and 3D structures have been obtained. Structural features, comprising a folding that determines a similar spatial distribution of charged and hydrophobic side chains of specific amino acids, are strikingly common among the toxins from spider and scorpion venoms. Such similarities are, in turn, the key feature to target and bind these proteins to ionic channels. The search for new insecticidal compounds, as well as the study of their modes of action, constitutes a current approach to rationally design novel insecticides. This goal tends to be more relevant if the resistance to the conventional chemical products is considered. A promising alternative seems to be the biotechnological approach using toxin-expressing recombinant baculovirus. Spider and scorpion toxins having insecticidal activity are reviewed here considering their structures, toxicities and action mechanisms in sodium channels of excitable membranes.
    Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology 10/2006; 146(1-2):264-79. DOI:10.1016/j.cbpc.2006.10.010 · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The proteomes of the venoms of the Brazilian wandering "armed" spiders Phoneutria nigriventer, Phoneutria reidyi, and Phoneutria keyserlingi, were compared using two-dimensional gel electrophoresis. The venom components were also fractionated using a combination of preparative reverse phase HPLC on Vydac C4, analytical RP-HPLC on Vydac C8 and C18 and cation exchange FPLC on Resource S at pH 6.1 and 4.7, or anion exchange HPLC on Synchropak AX-300 at pH 8.6. The amino acid sequences of the native and S-pyridyl-ethylated proteins and peptides derived from them by enzymatic digestion and chemical cleavages were determined using a Shimadzu PPSQ-21(A) automated protein sequencer, and by MS/MS collision induced dissociations. To date nearly 400 peptides and proteins (1.2-27 kDa) have been isolated in a pure state and, of these, more than 100 have had their complete or partial amino acid sequences determined. These sequences demonstrate, as might be expected, that the venoms of P. reidyi and P. keyserlingi (Family: Ctenidae) both contain a similar range of isoforms of the neurotoxins as those previously isolated from P. nigriventer which are active on neuronal ion (Ca(2+), Na(+) and K(+)) channels and NMDA-type glutamate receptors. In addition two new families of small (3-4 kDa) toxins, some larger protein (>10 kDa) components, and two serine proteinases of the venom of P. nigriventer are described. These enzymes may be responsible for some of the post-translational modification observed in some of the venom components.
    Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology 03/2006; 142(3-4):173-87. DOI:10.1016/j.cbpc.2005.09.010 · 2.83 Impact Factor
  • Toxicon 01/1996; 34(1):19-20. DOI:10.1016/S0041-0101(96)90038-0 · 2.58 Impact Factor