Martin Farlow

Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States

Are you Martin Farlow?

Claim your profile

Publications (230)1874.95 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The negative efficacy study examining the γ-secretase inhibitor semagacestat in mild to moderate Alzheimer's disease (AD) included a number of biomarkers of the disease as well as safety outcomes. We analyzed these data to explore relationships between drug exposure and pharmacodynamic effects and to examine the correlations among outcome measures. The study was a multicenter, randomized, placebo-controlled trial of two dose regimens of semagacestat and a placebo administered for 18 months to individuals with mild to moderate AD. Changes in measures of central and peripheral drug activity were compared between the three treatment groups using one-way analysis of variance. The relationship between changes in each of the outcome measures and measures of drug exposure and peripheral pharmacodynamic effect were assessed using Spearman's correlation coefficient. Assignment to the active treatment arms was associated with reduction in plasma amyloid-β (Aβ) peptides, increase in ventricular volume, decrease in cerebrospinal fluid phosphorylated tau (p-tau) and several other laboratory measures and adverse event categories. Within the active arms, exposure to drug, as indicated by area under the concentration curve (AUC) of blood concentration, was associated with reduction in plasma Aβ peptides and a subset of laboratory changes and adverse event rates. Ventricular volume increase, right hippocampal volume loss and gastrointestinal symptoms were related to change in plasma Aβ peptide but not AUC, supporting a link to inhibition of γ-secretase cleavage of the amyloid precursor protein. Cognitive decline correlated with ventricular expansion and reduction in p-tau. These findings may inform future studies of drugs targeting secretases involved in Aβ generation. Identifier: NCT00594568. Registered 11 January 2008.
    Alzheimer's Research and Therapy 12/2015; 7(1). DOI:10.1186/s13195-015-0121-6 · 3.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Psychotic symptoms are frequent in late-onset Alzheimer's disease (LOAD) patients. Although the risk for psychosis in LOAD is genetically mediated, no genes have been identified. To identify loci potentially containing genetic variants associated with risk of psychosis in LOAD, a total of 263 families from the National Institute of Aging-LOAD cohort were classified into psychotic (LOAD+P, n = 215) and nonpsychotic (LOAD-P, n = 48) families based on the presence/absence of psychosis during the course of LOAD. The LOAD+P families yielded strong evidence of linkage on chromosome 19q13 (two-point [2-pt] logarithm of odds [LOD] = 3.8, rs2285513 and multipoint LOD = 2.7, rs541169). Joint linkage and association in 19q13 region detected strong association with rs2945988 (p = 8.7 × 10(-7)). Linkage results for the LOAD-P families yielded nonsignificant 19q13 LOD scores. Several 19q13 single-nucleotide polymorphisms generalized the association of LOAD+P in a Caribbean Hispanic (CH) cohort, and the strongest signal was rs10410711 (pmeta = 5.1 × 10(-5)). A variant located 24 kb upstream of rs10410711 and rs10421862 was strongly associated with LOAD+P (pmeta = 1.0 × 10(-5)) in a meta-analysis of the CH cohort and an additional non-Hispanic Caucasian dataset. Identified variants rs2945988 and rs10421862 affect brain gene expression levels. Our results suggest that genetic variants in genes on 19q13, some of which are involved in brain development and neurodegeneration, may influence the susceptibility to psychosis in LOAD patients.
    Neurobiology of aging 09/2015; DOI:10.1016/j.neurobiolaging.2015.08.006 · 5.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prior studies indicate psychiatric symptoms such as depression, apathy and anxiety are risk factors for or prodromal symptoms of incipient Alzheimer's disease. The study of persons at 50% risk for inheriting autosomal dominant Alzheimer's disease mutations allows characterization of these symptoms before progressive decline in a population destined to develop illness. We sought to characterize early behavioural features in carriers of autosomal dominant Alzheimer's disease mutations. Two hundred and sixty-one persons unaware of their mutation status enrolled in the Dominantly Inherited Alzheimer Network, a study of persons with or at-risk for autosomal dominant Alzheimer's disease, were evaluated with the Neuropsychiatric Inventory-Questionnaire, the 15-item Geriatric Depression Scale and the Clinical Dementia Rating Scale (CDR). Ninety-seven asymptomatic (CDR = 0), 25 mildly symptomatic (CDR = 0.5), and 33 overtly affected (CDR > 0.5) autosomal dominant Alzheimer's disease mutation carriers were compared to 106 non-carriers with regard to frequency of behavioural symptoms on the Neuropsychiatric Inventory-Questionnaire and severity of depressive symptoms on the Geriatric Depression Scale using generalized linear regression models with appropriate distributions and link functions. Results from the adjusted analyses indicated that depressive symptoms on the Neuropsychiatric Inventory-Questionnaire were less common in cognitively asymptomatic mutation carriers than in non-carriers (5% versus 17%, P = 0.014) and the odds of experiencing at least one behavioural sign in cognitively asymptomatic mutation carriers was lower than in non-carriers (odds ratio = 0.50, 95% confidence interval: 0.26-0.98, P = 0.042). Depression (56% versus 17%, P = 0.0003), apathy (40% versus 4%, P < 0.0001), disinhibition (16% versus 2%, P = 0.009), irritability (48% versus 9%, P = 0.0001), sleep changes (28% versus 7%, P = 0.003), and agitation (24% versus 6%, P = 0.008) were more common and the degree of self-rated depression more severe (mean Geriatric Depression Scale score of 2.8 versus 1.4, P = 0.006) in mildly symptomatic mutation carriers relative to non-carriers. Anxiety, appetite changes, delusions, and repetitive motor activity were additionally more common in overtly impaired mutation carriers. Similar to studies of late-onset Alzheimer's disease, we demonstrated increased rates of depression, apathy, and other behavioural symptoms in the mildly symptomatic, prodromal phase of autosomal dominant Alzheimer's disease that increased with disease severity. We did not identify any increased psychopathology in mutation carriers over non-carriers during the presymptomatic stage, suggesting these symptoms result when a threshold of neurodegeneration is reached rather than as life-long qualities. Unexpectedly, we found lower rates of depressive symptoms in cognitively asymptomatic mutation carriers. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email:
    Brain 02/2015; 138(4). DOI:10.1093/brain/awv004 · 9.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Memory impairment is the cardinal early feature of Alzheimer's disease, a highly prevalent disorder whose causes remain only partially understood. To identify novel genetic predictors, we used an integrative genomics approach to perform the largest study to date of human memory (n=14 781). Using a genome-wide screen, we discovered a novel association of a polymorphism in the pro-apoptotic gene FASTKD2 (fas-activated serine/threonine kinase domains 2; rs7594645-G) with better memory performance and replicated this finding in independent samples. Consistent with a neuroprotective effect, rs7594645-G carriers exhibited increased hippocampal volume and gray matter density and decreased cerebrospinal fluid levels of apoptotic mediators. The MTOR (mechanistic target of rapamycin) gene and pathways related to endocytosis, cholinergic neurotransmission, epidermal growth factor receptor signaling and immune regulation, among others, also displayed association with memory. These findings nominate FASTKD2 as a target for modulating neurodegeneration and suggest potential mechanisms for therapies to combat memory loss in normal cognitive aging and dementia.Molecular Psychiatry advance online publication 11 November 2014; doi:10.1038/mp.2014.142.
    Molecular Psychiatry 11/2014; DOI:10.1038/mp.2014.142 · 14.50 Impact Factor
  • International Congress of Neuropathology Rio de Janerio, Brazil; 09/2014
  • International Congress of Neuropathology Rio de Janerio; 09/2014
  • Yansheng Du · Huiying Gu · Richard Dodel · Martin Farlow
    08/2014; DOI:10.2147/ANTI.S53336
  • Source
    Article: THE DIAN-TU
  • Rachelle S Doody · Martin Farlow · Paul S Aisen
    New England Journal of Medicine 04/2014; 370(15):1460. DOI:10.1056/NEJMc1402193 · 55.87 Impact Factor
  • Martin Farlow
    Neurobiology of Aging 03/2014; 35. DOI:10.1016/j.neurobiolaging.2014.01.051 · 5.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease is characterized by amyloid-beta plaques, neurofibrillary tangles, gliosis, and neuronal loss. Solanezumab, a humanized monoclonal antibody, preferentially binds soluble forms of amyloid and in preclinical studies promoted its clearance from the brain. In two phase 3, double-blind trials (EXPEDITION 1 and EXPEDITION 2), we randomly assigned 1012 and 1040 patients, respectively, with mild-to-moderate Alzheimer's disease to receive placebo or solanezumab (administered intravenously at a dose of 400 mg) every 4 weeks for 18 months. The primary outcomes were the changes from baseline to week 80 in scores on the 11-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog11; range, 0 to 70, with higher scores indicating greater cognitive impairment) and the Alzheimer's Disease Cooperative Study-Activities of Daily Living scale (ADCS-ADL; range, 0 to 78, with lower scores indicating worse functioning). After analysis of data from EXPEDITION 1, the primary outcome for EXPEDITION 2 was revised to the change in scores on the 14-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog14; range, 0 to 90, with higher scores indicating greater impairment), in patients with mild Alzheimer's disease. Neither study showed significant improvement in the primary outcomes. The modeled difference between groups (solanezumab group minus placebo group) in the change from baseline was -0.8 points for the ADAS-cog11 score (95% confidence interval [CI], -2.1 to 0.5; P=0.24) and -0.4 points for the ADCS-ADL score (95% CI, -2.3 to 1.4; P=0.64) in EXPEDITION 1 and -1.3 points (95% CI, -2.5 to 0.3; P=0.06) and 1.6 points (95% CI, -0.2 to 3.3; P=0.08), respectively, in EXPEDITION 2. Between-group differences in the changes in the ADAS-cog14 score were -1.7 points in patients with mild Alzheimer's disease (95% CI, -3.5 to 0.1; P=0.06) and -1.5 in patients with moderate Alzheimer's disease (95% CI, -4.1 to 1.1; P=0.26). In the combined safety data set, the incidence of amyloid-related imaging abnormalities with edema or hemorrhage was 0.9% with solanezumab and 0.4% with placebo for edema (P=0.27) and 4.9% and 5.6%, respectively, for hemorrhage (P=0.49). Solanezumab, a humanized monoclonal antibody that binds amyloid, failed to improve cognition or functional ability. (Funded by Eli Lilly; EXPEDITION 1 and 2 numbers, NCT00905372 and NCT00904683.).
    New England Journal of Medicine 01/2014; 370(4):311-21. DOI:10.1056/NEJMoa1312889 · 55.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: IMPORTANCE Late-onset Alzheimer disease (LOAD), defined as onset of symptoms after age 65 years, is the most common form of dementia. Few reports investigate incidence rates in large family-based studies in which the participants were selected for family history of LOAD. OBJECTIVE To determine the incidence rates of dementia and LOAD in unaffected members in the National Institute on Aging Genetics Initiative for Late-Onset Alzheimer Disease/National Cell Repository for Alzheimer Disease (NIA-LOAD/NCRAD) and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) family studies. DESIGN, SETTING, AND PARTICIPANTS Families with 2 or more affected siblings who had a clinical or pathological diagnosis of LOAD were recruited as a part of the NIA-LOAD/NCRAD Family Study. A cohort of Caribbean Hispanics with familial LOAD was recruited in a different study at the Taub Institute for Research on Alzheimer's Disease and the Aging Brain in New York and from clinics in the Dominican Republic as part of the EFIGA study. MAIN OUTCOMES AND MEASURES Age-specific incidence rates of LOAD were estimated in the unaffected family members in the NIA-LOAD/NCRAD and EFIGA data sets. We restricted analyses to families with follow-up and complete phenotype information, including 396 NIA-LOAD/NCRAD and 242 EFIGA families. Among the 943 at-risk family members in the NIA-LOAD/NCRAD families, 126 (13.4%) developed dementia, of whom 109 (86.5%) met criteria for LOAD. Among 683 at-risk family members in the EFIGA families, 174 (25.5%) developed dementia during the study period, of whom 145 (83.3%) had LOAD. RESULTS The annual incidence rates of dementia and LOAD in the NIA-LOAD/NCRAD families per person-year were 0.03 and 0.03, respectively, in participants aged 65 to 74 years; 0.07 and 0.06, respectively, in those aged 75 to 84 years; and 0.08 and 0.07, respectively, in those 85 years or older. Incidence rates in the EFIGA families were slightly higher, at 0.03 and 0.02, 0.06 and 0.05, 0.10 and 0.08, and 0.10 and 0.07, respectively, in the same age groups. Contrasting these results with the population-based estimates, the incidence was increased by 3-fold for NIA-LOAD/NCRAD families (standardized incidence ratio, 3.44) and 2-fold among the EFIGA compared with the NIA-LOAD/NCRAD families (1.71). CONCLUSIONS AND RELEVANCE The incidence rates for familial dementia and LOAD in the NIA-LOAD/NCRAD and EFIGA families are significantly higher than population-based estimates. The incidence rates in all groups increase with age. The higher incidence of LOAD can be explained by segregation of Alzheimer disease-related genes in these families or shared environmental risks.
    01/2014; 71(3). DOI:10.1001/jamaneurol.2013.5570
  • G. Grossberg · M. Farlow · X. Meng · M. Somogyi
    Journal of the Neurological Sciences 10/2013; 333:e336. DOI:10.1016/j.jns.2013.07.1244 · 2.47 Impact Factor
  • M. Farlow · G. Grossberg · C. Sadowsky · X. Meng · M. Somgyi
    Journal of the Neurological Sciences 10/2013; 333:e339. DOI:10.1016/j.jns.2013.07.1252 · 2.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Dominantly Inherited Alzheimer's Network Trials Unit (DIAN-TU) was formed to direct the design and management of interventional therapeutic trials of international DIAN and autosomal dominant Alzheimer's disease (ADAD) participants. The goal of the DIAN-TU is to implement safe trials that have the highest likelihood of success while advancing scientific understanding of these diseases and clinical effects of proposed therapies. The DIAN-TU has launched a trial design that leverages the existing infrastructure of the ongoing DIAN observational study, takes advantage of a variety of drug targets, incorporates the latest results of biomarker and cognitive data collected during the observational study, and implements biomarkers measuring Alzheimer's disease (AD) biological processes to improve the efficiency of trial design. The DIAN-TU trial design is unique due to the sophisticated design of multiple drugs, multiple pharmaceutical partners, academics servings as sponsor, geographic distribution of a rare population and intensive safety and biomarker assessments. The implementation of the operational aspects such as home health research delivery, safety magnetic resonance imagings (MRIs) at remote locations, monitoring clinical and cognitive measures, and regulatory management involving multiple pharmaceutical sponsors of the complex DIAN-TU trial are described.
    Revue Neurologique 09/2013; 169(10). DOI:10.1016/j.neurol.2013.07.017 · 0.66 Impact Factor
  • Source
    Steven H Ferris · Martin Farlow
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease is characterized by progressively worsening deficits in several cognitive domains, including language. Language impairment in Alzheimer's disease primarily occurs because of decline in semantic and pragmatic levels of language processing. Given the centrality of language to cognitive function, a number of language-specific scales have been developed to assess language deficits throughout progression of the disease and to evaluate the effects of pharmacotherapy on language function. Trials of acetylcholinesterase inhibitors, used for the treatment of clinical symptoms of Alzheimer's disease, have generally focused on overall cognitive effects. However, in the current report, we review data indicating specific beneficial effects of acetylcholinesterase inhibitors on language abilities in patients with Alzheimer's disease, with a particular focus on outcomes among patients in the moderate and severe disease stages, during which communication is at risk and preservation is particularly important.
    Clinical Interventions in Aging 08/2013; 8:1007-14. DOI:10.2147/CIA.S39959 · 2.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease is characterized by the presence of cortical amyloid-beta (Aβ) protein plaques, which result from the sequential action of β-secretase and γ-secretase on amyloid precursor protein. Semagacestat is a small-molecule γ-secretase inhibitor that was developed as a potential treatment for Alzheimer's disease. We conducted a double-blind, placebo-controlled trial in which 1537 patients with probable Alzheimer's disease underwent randomization to receive 100 mg of semagacestat, 140 mg of semagacestat, or placebo daily. Changes in cognition from baseline to week 76 were assessed with the use of the cognitive subscale of the Alzheimer's Disease Assessment Scale for cognition (ADAS-cog), on which scores range from 0 to 70 and higher scores indicate greater cognitive impairment, and changes in functioning were assessed with the Alzheimer's Disease Cooperative Study-Activities of Daily Living (ADCS-ADL) scale, on which scores range from 0 to 78 and higher scores indicate better functioning. A mixed-model repeated-measures analysis was used. The trial was terminated before completion on the basis of a recommendation by the data and safety monitoring board. At termination, there were 189 patients in the group receiving placebo, 153 patients in the group receiving 100 mg of semagacestat, and 121 patients in the group receiving 140 mg of semagacestat. The ADAS-cog scores worsened in all three groups (mean change, 6.4 points in the placebo group, 7.5 points in the group receiving 100 mg of the study drug, and 7.8 points in the group receiving 140 mg; P=0.15 and P=0.07, respectively, for the comparison with placebo). The ADCS-ADL scores also worsened in all groups (mean change at week 76, -9.0 points in the placebo group, -10.5 points in the 100-mg group, and -12.6 points in the 140-mg group; P=0.14 and P<0.001, respectively, for the comparison with placebo). Patients treated with semagacestat lost more weight and had more skin cancers and infections, treatment discontinuations due to adverse events, and serious adverse events (P<0.001 for all comparisons with placebo). Laboratory abnormalities included reduced levels of lymphocytes, T cells, immunoglobulins, albumin, total protein, and uric acid and elevated levels of eosinophils, monocytes, and cholesterol; the urine pH was also elevated. As compared with placebo, semagacestat did not improve cognitive status, and patients receiving the higher dose had significant worsening of functional ability. Semagacestat was associated with more adverse events, including skin cancers and infections. (Funded by Eli Lilly; number, NCT00594568.)
    New England Journal of Medicine 07/2013; 369(4):341-50. DOI:10.1056/NEJMoa1210951 · 55.87 Impact Factor
  • Alzheimer's and Dementia 07/2013; 9(4):P276. DOI:10.1016/j.jalz.2013.05.549 · 12.41 Impact Factor
  • Alzheimer's and Dementia 07/2013; 9(4):P656. DOI:10.1016/j.jalz.2013.05.1347 · 12.41 Impact Factor
  • Alzheimer's and Dementia 07/2013; 9(4):P255. DOI:10.1016/j.jalz.2013.05.501 · 12.41 Impact Factor

Publication Stats

11k Citations
1,874.95 Total Impact Points


  • 1986–2015
    • Indiana University-Purdue University Indianapolis
      • • Department of Neurology
      • • Department of Medicine
      • • Institute of Psychiatric Research
      • • Department of Ophthalmology
      • • Department of Psychiatry
      Indianapolis, Indiana, United States
  • 2013
    • University of Massachusetts Medical School
      Worcester, Massachusetts, United States
  • 2002–2013
    • University of California, San Diego
      • • Department of Family and Preventive Medicine
      • • Department of Neurosciences
      San Diego, California, United States
  • 1991–2013
    • Indiana University-Purdue University School of Medicine
      • • Neurology
      • • Department of Pathology and Laboratory Medicine
      Indianapolis, Indiana, United States
  • 2010
    • St. Vinzenz-Hospital
      Dinslaken, North Rhine-Westphalia, Germany
  • 2008
    • Technische Universität München
      München, Bavaria, Germany
  • 2004
    • Harvard University
      Cambridge, Massachusetts, United States
  • 2003
    • Indiana University East
      Ричмонд, Indiana, United States
  • 2000
    • Indiana University Bloomington
      • Department of Neurology
      Bloomington, Indiana, United States
  • 1997
    • University of Southern California
      • Department of Medicine
      Los Angeles, CA, United States
  • 1994
    • CUNY Graduate Center
      New York, New York, United States
  • 1993
    • Richard L. Roudebush VA Medical Center
      Indianapolis, Indiana, United States