M. J. Page

University College London, Londinium, England, United Kingdom

Are you M. J. Page?

Claim your profile

Publications (443)1465.86 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [Abridged] We study the evolution of the radio spectral index and far-infrared/radio correlation (FRC) across the star-formation rate-stellar masse (i.e. SFR-M*) plane up to z 2. We start from a M*-selected sample of galaxies with reliable SFR and redshift estimates. We then grid the SFR-M* plane in several redshift ranges and measure the infrared luminosity, radio luminosity, radio spectral index, and ultimately the FRC index (i.e. qFIR) of each SFR-M*-z bin. The infrared luminosities of our SFR-M*-z bins are estimated using their stacked far-infrared flux densities inferred from observations obtained with Herschel. Their radio luminosities and radio spectral indices (i.e. alpha, where Snu nu^-alpha) are estimated using their stacked 1.4GHz and 610MHz flux densities from the VLA and GMRT, respectively. Our far-infrared and radio observations include the most widely studied blank extragalactic fields -GOODS-N/S, ECDFS, and COSMOS- covering a sky area of 2deg^2. Using this methodology, we constrain the radio spectral index and FRC index of star-forming galaxies with M*>10^10Msun and 0<z<2.3. We find that alpha^1.4GHz_610MHz does not evolve significantly with redshift or with the distance of a galaxy with respect to the main sequence (MS) of the SFR-M* plane (i.e. Delta_log(SSFR)_MS=log[SSFR(galaxy)/SSFR_MS(M*,z)]). Instead, star-forming galaxies have a radio spectral index consistent with a canonical value of 0.8, which suggests that their radio spectra are dominated by non-thermal optically thin synchrotron emission. We find that qFIR displays a moderate but statistically significant redshift evolution as qFIR(z)=(2.35+/-0.08)*(1+z)^(-0.12+/-0.04), consistent with some previous literature. Finally, we find no significant correlation between qFIR and Delta_log(SSFR)_MS, though a weak positive trend, as observed in one of our redshift bins, cannot be firmly ruled out using our dataset.
    10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a derivation of the star formation rate per comoving volume of quasar host galaxies, derived from stacking analyses of far-infrared to mm-wave photometry of quasars with redshifts 0 ensuremath< ensuremath zensuremath<?iensuremath> ensuremath< 6 and absolute ensuremath Iensuremath<?iensuremath>-band magnitudes -22 ensuremath> ensuremath Iensuremath<?iensuremath>ensuremath ABensuremath<?subensuremath> ensuremath> -32 We use the science demonstration observations of the first textttchar12616 degensuremath 2ensuremath<?supensuremath> from the ensuremath Herschelensuremath<?iensuremath> Astrophysical Terahertz Large Area Survey (H-ATLAS) in which there are 240 quasars from the Sloan Digital Sky Survey (SDSS) and a further 171 from the 2dF-SDSS LRG and QSO (2SLAQ) survey. We supplement this data with a compilation of data from IRAS, ISO, ensuremath Spitzerensuremath<?iensuremath>, SCUBA and MAMBO. H-ATLAS alone statistically detects the quasars in its survey area at ensuremath>5ensuremath ensuremathsigmaensuremath<?iensuremath> at 250,350 and 500 ensuremath ensuremathmuensuremath<?iensuremath>m. From the compilation as a whole we find striking evidence of downsizing in quasar host galaxy formation: low-luminosity quasars with absolute magnitudes in the range -22 ensuremath> ensuremath Iensuremath<?iensuremath>ensuremath ABensuremath<?subensuremath> ensuremath> -24 have a comoving star formation rate (derived from 100 ensuremath ensuremathmuensuremath<?iensuremath>m rest-frame luminosities) peaking between redshifts of ensuremath 1ensuremath<?iensuremath> and ensuremath 2ensuremath<?iensuremath>, while high-luminosity quasars with ensuremath Iensuremath<?iensuremath>ensuremath ABensuremath<?subensuremath> ensuremath< -26 have a maximum contribution to the star formation density at ensuremath zensuremath<?iensuremath> textttchar126 3. The volume-averaged star formation rate of -22 ensuremath> ensuremath Iensuremath<?iensuremath>ensuremath ABensuremath<?subensuremath> ensuremath> -24 quasars evolves as (1 ? ensuremath zensuremath<?iensuremath>)ensuremath 2.3$pm$0.7ensuremath<?supensuremath> at ensuremath zensuremath<?iensuremath> ensuremath< 2, but the evolution at higher luminosities is much faster reaching (1 ? ensuremath zensuremath<?iensuremath>)ensuremath 10$pm$1ensuremath<?supensuremath> at -26 ensuremath> ensuremath Iensuremath<?iensuremath>ensuremath ABensuremath<?subensuremath> ensuremath> -28. We tentatively interpret this as a combination of a declining major merger rate with time and gas consumption reducing fuel for both black hole accretion and star formation.
    Astronomy and Astrophysics. 09/2014; 518:L7?1-L7?5.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the most complete study to date of the X-ray emission from star-formation in high redshift (median z=0.7; z<1.5), IR-luminous (L_IR=10^10-10^13 L_sun) galaxies detected by Herschel's PACS and SPIRE instruments. For our purpose we take advantage of the deepest X-ray data to date, the Chandra deep fields (North and South). Sources which host AGN are removed from our analysis by means of multiple AGN indicators. We find an AGN fraction of 18+/-2 per cent amongst our sample and note that AGN entirely dominate at values of log[L_X/L_IR]>-3 in both hard and soft X-ray bands. From the sources which are star-formation dominated, only a small fraction are individually X-ray detected and for the bulk of the sample we calculate average X-ray luminosities through stacking. We find an average soft X-ray to infrared ratio of log[L_SX/L_IR]=-4.3 and an average hard X-ray to infrared ratio of log[L_HX/L_IR]=-3.8. We report that the X-ray/IR correlation is approximately linear through the entire range of L_IR and z probed and, although broadly consistent with the local (z<0.1) one, it does display some discrepancies. We suggest that these discrepancies are unlikely to be physical, i.e. due to an intrinsic change in the X-ray properties of star-forming galaxies with cosmic time, as there is no significant evidence for evolution of the L_X/L_IR ratio with redshift. Instead they are possibly due to selection effects and remaining AGN contamination. We also examine whether dust obscuration in the galaxy plays a role in attenuating X-rays from star-formation, by investigating changes in the L_X/L_IR ratio as a function of the average dust temperature. We conclude that X-rays do not suffer any measurable attenuation in the host galaxy.
    Monthly Notices of the Royal Astronomical Society 07/2014; 443(4). · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present Herschel/PACS observations of the nearby (z=0.1055) dwarf galaxy that has hosted the long gamma ray burst (LGRB) 031203. Using the PACS data we have been able to place constraints on the dust temperature, dust mass, total infrared luminosity and infrared-derived star-formation rate (SFR) for this object. We find that the GRB host galaxy (GRBH) 031203 has a total infrared luminosity of 3x10^10 L_sun placing it in the regime of the IR-luminous galaxy population. Its dust temperature and specific SFR are comparable to that of many high-redshift (z=0.3-2.5) infrared (IR)-detected GRB hosts (T_dust>40K ; sSFR>10 Gyr^-1), however its dust-to-stellar mass ratio is lower than what is commonly seen in IR-luminous galaxies. Our results suggest that GRBH 031203 is undergoing a strong starburst episode and its dust properties are different to those of local dwarf galaxies within the same metallicity and stellar mass range. Furthermore, our measurements place it in a distinct class to the well studied nearby host of GRB 980425 (z=0.0085), confirming the notion that GRB host galaxies can span a large range in properties even at similar cosmological epochs, making LGRBs an ideal tool in selecting samples of star-forming galaxies up to high redshift.
    Monthly Notices of the Royal Astronomical Society Letters 06/2014; 443(1). · 5.52 Impact Factor
  • 04/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: (Abridged) We combine NUV, optical and IR imaging of the nearby starburst galaxy M82 to explore the properties of the dust both in the interstellar medium of the galaxy and the dust entrained in the superwind. The three NUV filters of Swift/UVOT enable us to probe in detail the properties of the extinction curve in the region around the 2175A bump. The NUV colour-colour diagram strongly rules out a Calzetti-type law, which can either reflect intrinsic changes in the dust properties or in the star formation history compared to starbursts well represented by such an attenuation law. We emphasize that it is mainly in the NUV region where a standard Milky-Way-type law is preferred over a Calzetti law. The age and dust distribution of the stellar populations is consistent with the scenario of an encounter with M81 in the recent 400 Myr. The radial gradients of the NUV and optical colours in the superwind region support the hypothesis that the emission in the wind cone is driven by scattering from dust grains entrained in the ejecta. The observed wavelength dependence reveals either a grain size distribution $n(a)\propto a^{-2.5}$, where $a$ is the size of the grain, or a flatter distribution with a maximum size cutoff, suggesting that only small grains are entrained in the supernovae-driven wind.
    01/2014; 440(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a study of the infrared properties for a sample of seven spectroscopically confirmed submillimeter galaxies at $z>$4.0. By combining ground-based near-infrared, Spitzer IRAC and MIPS, Herschel SPIRE, and ground-based submillimeter/millimeter photometry, we construct their Spectral Energy Distributions (SED) and a composite model to fit the SEDs. The model includes a stellar emission component at $\lambda_{\rm rest} <$ 3.5$ \mu$m; a hot dust component peaking at $\lambda_{rest} \sim$ 5$\,\mu$m; and cold dust component which becomes significant for $\lambda_{\rm rest} >$ 50$\,\mu$m. Six objects in the sample are detected at 250 and 350$ \mu$m. The dust temperatures for the sources in this sample are in the range of 40$-$80 K, and their $L_{\rm FIR}$ $\sim$ 10$^{13}$ L$_{\odot}$ qualifies them as Hyper$-$Luminous Infrared Galaxies (HyperLIRGs). The mean FIR-radio index for this sample is around $< q > = 2.2$ indicating no radio excess in their radio emission. Most sources in the sample have 24$ \mu$m detections corresponding to a rest-frame 4.5$ \mu$m luminosity of Log$_{10}$(L$_{4.5}$ / L$_{\odot}$) = 11 $\sim$ 11.5. Their L$_{\rm 4.5}$/$L_{\rm FIR}$ ratios are very similar to those of starburst dominated submillimeter galaxies at $z \sim$ 2. The $L_{\rm CO}-L_{\rm FIR}$ relation for this sample is consistent with that determined for local ULIRGs and SMGs at $z \sim$ 2. We conclude that submillimeter galaxies at $z >$ 4 are hotter and more luminous in the FIR, but otherwise very similar to those at $z \sim$ 2. None of these sources show any sign of the strong QSO phase being triggered.
    01/2014; 784(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a wide dataset of gamma-ray, X-ray, UVOIR, and radio observations of the Swift GRB100814A. At the end of the slow decline phase of the X-ray and optical afterglow, this burst shows a sudden and prominent rebrightening in the optical band only, followed by a fast decay in both bands. The optical rebrightening also shows chromatic evolution. Such a puzzling behaviour cannot be explained by a single component model. We discuss other possible interpretations, and we find that a model that incorporates a long-lived Reverse Shock and Forward Shock fits the temporal and spectral properties of GRB100814 the best. We also touch upon other GRBs presenting a behaviour similar to that of GRB100814A, such as GRB081029 and GRB100621A.
    12/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-duration Gamma-Ray Bursts (GRBs) are an extremely rare outcome of the collapse of massive stars, and are typically found in the distant Universe. Because of its intrinsic luminosity (L ∼ 3 × 10(53) erg s(-1)) and its relative proximity (z = 0.34), GRB 130427A was a unique event that reached the highest fluence observed in the γ-ray band. Here we present a comprehensive multiwavelength view of GRB 130427A with Swift, the 2-m Liverpool and Faulkes telescopes and by other ground-based facilities, highlighting the evolution of the burst emission from the prompt to the afterglow phase. The properties of GRB 130427A are similar to those of the most luminous, high-redshift GRBs, suggesting that a common central engine is responsible for producing GRBs in both the contemporary and the early Universe and over the full range of GRB isotropic energies.
    Science 11/2013; · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RE J2248-511 is one of only 14 non-blazar AGN detected in the far ultraviolet by the ROSAT Wide Field Camera implying a large ultrasoft X-ray flux. This soft X-ray excess is strongly variable on year timescales, a common property of Narrow Line Seyfert 1s, yet its optical linewidths classify this source as a broad-lined Seyfert 1. We use four nearly simultaneous optical--X-ray SEDs spanning 7 years to study the spectral shape and long term variability of RE J2248-511. Here we show that the continuum SED for the brightest epoch dataset is consistent with the mean SED of a standard quasar, and matches well to that from an XMM-SDSS sample of AGN with <M/M_Sun> ~ 10^8 and <L/L_Edd> ~ 0.2. All the correlated optical and soft X-ray variability can be due entirely to a major absorption event. The only remarkable aspect of this AGN is that there is no measurable intrinsic X-ray absorption column in the brightest epoch dataset. The observed FUV flux is determined by the combination of this and the fact that the source lies within a local absorption `hole'. RE J2248-511, whose variable, ultrasoft X-ray flux once challenged its BLS1 classification, demonstrates that characterisation of such objects requires multi-epoch, multi-wavelength campaigns.
    Monthly Notices of the Royal Astronomical Society 11/2013; 437(4). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [Abridged] We study the evolution of the dust temperatures of galaxies in the SFR-M* plane up to z~2 using observations from the Herschel Space Observatory. Starting from a sample of galaxies with reliable star-formation rates (SFRs), stellar masses (M*) and redshift estimates, we grid the SFR-M* parameter space in several redshift ranges and estimate the mean Tdust of each SFR-M*-z bin. Dust temperatures are inferred using the stacked far-infrared flux densities of our SFR-M*-z bins. At all redshifts, Tdust increases with infrared luminosities (LIR), specific SFRs (SSFR; i.e., SFR/M*) and distances with respect to the main sequence (MS) of the SFR-M* plane (i.e., D_SSFR_MS=log[SSFR(galaxy)/SSFR_MS(M*,z)]). The Tdust-SSFR and Tdust-D_SSFR_MS correlations are statistically more significant than the Tdust-LIR one. While the slopes of these three correlations are redshift-independent, their normalizations evolve from z=0 and z~2. We convert these results into a recipe to derive Tdust from SFR, M* and z. The existence of a strong Tdust-D_SSFR_MS correlation provides us with information on the dust and gas content of galaxies. (i) The slope of the Tdust-D__SSFR_MS correlation can be explained by the increase of the star-formation efficiency (SFE; SFR/Mgas) with D_SSFR_MS as found locally by molecular gas studies. (ii) At fixed D_SSFR_MS, the constant Tdust observed in galaxies probing large ranges in SFR and M* can be explained by an increase or decrease of the number of star-forming regions with comparable SFE enclosed in them. (iii) At high redshift, the normalization towards hotter temperature of the Tdust-D_SSFR_MS correlation can be explained by the decrease of the metallicities of galaxies or by the increase of the SFE of MS galaxies. All these results support the hypothesis that the conditions prevailing in the star-forming regions of MS and far-above-MS galaxies are different.
    11/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present X-ray imaging and spectroscopy of the redshift z=7.084 quasar ULAS J112001.48+064124.3 obtained with Chandra and XMM-Newton. The quasar is detected as a point source with both observatories. The Chandra observation provides a precise position, confirming the association of the X-ray source and the quasar, while sufficient photons are detected in the XMM-Newton observation to yield a meaningful X-ray spectrum. In the XMM-Newton observation the quasar has a 2-10 keV luminosity of 4.7 +- 0.9 times 10^44 ergs/s and a spectral slope alpha = 1.6 +0.4 -0.3 (where f_nu propto nu^-alpha). The very soft spectrum suggests that the quasar is accreting above the Eddington rate, which would help to reduce the discrepancy between the age of the quasar implied by the small size of the ionized near zone in which it sits (<10^7 years), and the characteristic e-folding time (2.5 times 10^7 years if L/L_Edd=2). Such super-Eddington accretion would also alleviate the challenging constraints on the seed black hole mass, and the remnant of an individual population III star is a plausible progenitor if an average L/L_Edd>1.46 has been maintained over the quasar's lifetime.
    11/2013; 440(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a method for selecting $z>4$ dusty, star forming galaxies (DSFGs) using Herschel/SPIRE 250/350/500 $\mu m$ flux densities to search for red sources. We apply this method to 21 deg$^2$ of data from the HerMES survey to produce a catalog of 38 high-$z$ candidates. Follow-up of the first 5 of these sources confirms that this method is efficient at selecting high-$z$ DSFGs, with 4/5 at $z=4.3$ to $6.3$ (and the remaining source at $z=3.4$), and that they are some of the most luminous dusty sources known. Comparison with previous DSFG samples, mostly selected at longer wavelengths (e.g., 850 $\mu m$) and in single-band surveys, shows that our method is much more efficient at selecting high-$z$ DSFGs, in the sense that a much larger fraction are at $z>3$. Correcting for the selection completeness and purity, we find that the number of bright ($S_{500\,\mu m} \ge 30$ mJy), red Herschel sources is $3.3 \pm 0.8$ deg$^{-2}$. This is much higher than the number predicted by current models, suggesting that the DSFG population extends to higher redshifts than previously believed. If the shape of the luminosity function for high-$z$ DSFGs is similar to that at $z\sim2$, rest-frame UV based studies may be missing a significant component of the star formation density at $z=4$ to $6$, even after correction for extinction.
    10/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dynamic range of photon counting micro-channel-plate (MCP) intensified charged-coupled device (CCD) instruments such as the Swift Ultraviolet/Optical Telescope (UVOT) and the XMM-Newton Optical Monitor (XMM-OM) is limited at the bright end by coincidence loss, the superposition of multiple photons in the individual frames recorded by the CCD. Photons which arrive during the brief period in which the image frame is transferred for read out of the CCD are displaced in the transfer direction in the recorded images. For sufficiently bright sources, these displaced counts form read-out streaks. Using UVOT observations of Tycho-2 stars, we investigate the use of these read-out streaks to obtain photometry for sources which are too bright (and hence have too much coincidence loss) for normal aperture photometry to be reliable. For read-out-streak photometry, the bright-source limiting factor is coincidence loss within the MCPs rather than the CCD. We find that photometric measurements can be obtained for stars up to 2.4 magnitudes brighter than the usual full-frame coincidence-loss limit by using the read-out streaks. The resulting bright-limit Vega magnitudes in the UVOT passbands are UVW2=8.80, UVM2=8.27, UVW1=8.86, u=9.76, b=10.53, v=9.31 and White=11.71; these limits are independent of the windowing mode of the camera. We find that a photometric precision of 0.1 mag can be achieved through read-out streak measurements. A suitable method for the measurement of read-out streaks is described and all necessary calibration factors are given.
    Monthly Notices of the Royal Astronomical Society 09/2013; 436(2). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the mid- to far-IR properties of a 24um-selected flux-limited sample (S24 > 5mJy) of 154 intermediate redshift ( ~0.15), infrared luminous galaxies, drawn from the 5MUSES survey. By combining existing mid-IR spectroscopy and new Herschel SPIRE submm photometry from the HerMES program, we derived robust total infrared luminosity (LIR) and dust mass (Md) estimates and infered the relative contribution of the AGN to the infrared energy budget of the sources. We found that the total infrared emission of galaxies with weak 6.2um PAH emission (EW<0.2um) is dominated by AGN activity, while for galaxies with EW>0.2um more than 50% of the LIR arises from star formation. We also found that for galaxies detected in the 250-500um Herschel bands an AGN has a statistically insignificant effect on the temperature of the cold dust and the far-IR colours of the host galaxy, which are primarily shaped by star formation activity. For star-forming galaxies we reveal an anti-correlation between the LIR-to-rest-frame 8um luminosity ratio, IR8 = LIR\L8, and the strength of PAH features. We found that this anti-correlation is primarily driven by variations in the PAHs emission, and not by variations in the 5-15um mid-IR continuum emission. Using the [NeIII]/[NeII] line ratio as a tracer of the hardness of the radiation field, we confirm that galaxies with harder radiation fields tend to exhibit weaker PAH features, and found that they have higher IR8 values and higher dust-mass-weighted luminosities (LIR/Md), the latter being a proxy for the dust temperature (Td). We argue that these trends originate either from variations in the environment of the star-forming regions or are caused by variations in the age of the starburst. Finally, we provide scaling relations that will allow estimating LIR, based on single-band observations with the mid-infrared instrument, on board the upcoming JWST.
    Astronomy and Astrophysics 09/2013; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Athena+ mission concept is designed to implement the Hot and Energetic Universe science theme submitted to the European Space Agency in response to the call for White Papers for the definition of the L2 and L3 missions of its science program. The Athena+ science payload consists of a large aperture high angular resolution X-ray optics and twelve meters away, two interchangeable focal plane instruments: the X-ray Integral Field Unit (X-IFU) and the Wide Field Imager (WFI). The X-IFU is a cryogenic X-ray spectrometer, based on a large array of Transition Edge Sensors (TES), offering 2.5 eV spectral resolution, with ~5" pixels, over a field of view of 5 arc minutes in diameter. In this paper, we briefly describe the Athena+ mission concept and the X-IFU performance requirements. We then present the X-IFU detector and readout electronics principles, the current design of the focal plane assembly, the cooling chain and review the global architecture design. Finally, we describe the current performance estimates, in terms of effective area, particle background rejection, count rate capability and velocity measurements. Finally, we emphasize on the latest technology developments concerning TES array fabrication, spectral resolution and readout performance achieved to show that significant progresses are being accomplished towards the demanding X-IFU requirements.
    08/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the multi-wavelength properties of a sample of 450-\mu m selected sources from the SCUBA-2 Cosmology Legacy Survey (S2CLS). A total of 69 sources were identified above 4\sigma\ in deep SCUBA-2 450-\mu m observations overlapping the UDS and COSMOS fields and covering 210 sq. arcmin to a typical depth of \sigma 450=1.5 mJy. Reliable cross identification are found for 58 sources (84 per cent) in Spitzer and Hubble Space Telescope WFC3/IR data. The photometric redshift distribution (dN/dz) of 450\mu m-selected sources is presented, showing a broad peak in the redshift range 1<z<3, and a median of z=1.4. Combining the SCUBA-2 photometry with Herschel SPIRE data from HerMES, the submm spectral energy distribution (SED) is examined via the use of modified blackbody fits, yielding aggregate values for the IR luminosity, dust temperature and emissivity of =10^12 +/- 0.8 L_sol, =42 +/- 11 K and <\beta_D>=1.6 +/- 0.5, respectively. The relationship between these SED parameters and the physical properties of galaxies is investigated, revealing correlations between T_D and LIR and between \beta_D and both stellar mass and effective radius. The connection between star formation rate and stellar mass is explored, with 24 per cent of 450 \mu m sources found to be ``star-bursts'', i.e. displaying anomalously high specific SFRs. However, both the number density and observed properties of these ``star-burst'' galaxies are found consistent with the population of normal star-forming galaxies.
    Monthly Notices of the Royal Astronomical Society 08/2013; 436(1). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the far-infrared (FIR; rest-frame 8--1000\mu m) properties of a sample of 443 H\alpha-selected star-forming galaxies in the COSMOS and UDS fields detected by the HiZELS imaging survey. Sources are identified using narrow-band filters in combination with broad-band photometry to uniformly select H\alpha\ (and [OII] if available) emitters in a narrow redshift slice at z = 1.47+/-0.02. We use a stacking approach in Spitzer, Herschel (from PEP and HerMES surveys) and AzTEC images to describe their typical FIR properties. We find that HiZELS galaxies with observed H\alpha\ luminosities of ~ 10^{8.1-9.1} Lo have bolometric FIR luminosities of typical LIRGs, L_FIR ~ 10^{11.48+/-0.05} Lo. Combining the H\alpha\ and FIR luminosities, we derive median SFR = 32+/-5 Mo/yr and H\alpha\ extinctions of A(H\alpha) = 1.0+/-0.2 mag. Perhaps surprisingly, little difference is seen in typical HiZELS extinction levels compared to local star-forming galaxies. We confirm previous empirical stellar mass (M*) to A(H\alpha) relations and the little or no evolution up to z = 1.47. For HiZELS galaxies, we provide an empirical parametrisation of the SFR as a function of (u-z)_rest colours and 3.6\mu m photometry. We find that the observed H\alpha\ luminosity is a dominant SFR tracer when (u-z)_rest ~< 0.9 mag or when 3.6\mu m photometry > 22 mag (Vega) or when M* < 10^9.7 Mo. We do not find any correlation between the [OII]/H\alpha\ and FIR luminosity, suggesting that this emission line ratio does not trace the extinction of the most obscured star-forming regions. The luminosity-limited HiZELS sample tends to lie above of the so-called `main sequence' for star-forming galaxies, especially at low M*. This work suggests that obscured star formation is linked to the assembly of M*, with deeper potential wells in massive galaxies providing dense, heavily obscured environments in which stars can form rapidly.
    Monthly Notices of the Royal Astronomical Society 07/2013; 434(4). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronos is our response to ESA's call for white papers to define the science for the future L2, L3 missions. Chronos targets the formation and evolution of galaxies, by collecting the deepest NIR spectroscopic data, from the formation of the first galaxies at z~10 to the peak of formation activity at z~1-3. The strong emission from the atmospheric background makes this type of survey impossible from a ground-based observatory. The spectra of galaxies represent the equivalent of a DNA fingerprint, containing information about the past history of star formation and chemical enrichment. The proposed survey will allow us to dissect the formation process of galaxies including the timescales of quenching triggered by star formation or AGN activity, the effect of environment, the role of infall/outflow processes, or the connection between the galaxies and their underlying dark matter haloes. To provide these data, the mission requires a 2.5m space telescope optimised for a campaign of very deep NIR spectroscopy. A combination of a high multiplex and very long integration times will result in the deepest, largest, high-quality spectroscopic dataset of galaxies from z=1 to 12, spanning the history of the Universe, from 400 million to 6 billion years after the big bang, i.e. covering the most active half of cosmic history.
    06/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work we explore the impact of the presence of an active galactic nucleus (AGN) on the mid- and far-infrared (IR) properties of galaxies as well as the effects of simultaneous AGN and starburst activity in these same galaxies. To do this we apply a multi-component, multi-band spectral synthesis technique to a sample of 250 micron selected galaxies of the Herschel Multi-tiered Extragalactic Survey, with IRS spectra available for all galaxies. Our results confirm that the inclusion of the IRS spectra plays a crucial role in the spectral analysis of galaxies with an AGN component improving the selection of the best-fit hot dust model (torus). We find a correlation between the obscured star formation rate (SFR) derived from the IR luminosity of the starburst component, SFR_IR and SFR_PAH, derived from the luminosity of the PAH features, L_PAH, with SFR_FIR taking higher values than SFR_PAH. The correlation is different for AGN- and starburst-dominated objects. The ratio of L_PAH to that of the starburst component, L_PAH/L_SB, is almost constant for AGN-dominated objects but decreases with increasing L_SB for starburst-dominated objects. SFR_FIR increases with the accretion luminosity, L_acc, with the increase less prominent for the very brightest, unobscured AGN-dominated sources. We find no correlation between the masses of the hot and cold dust components. We interpret this as a non-constant fraction of gas driven by the gravitational effects to the AGN while the starburst is ongoing. We also find no evidence of the AGN affecting the temperature of the cold dust component, though this conclusion is mostly based on objects with a non-dominant AGN component. We conclude that our findings do not provide evidence that the presence of AGN affects the star formation process in the host galaxy, but rather that the two phenomena occur simultaneously over a wide range of luminosities.
    Monthly Notices of the Royal Astronomical Society 06/2013; 434(3). · 5.52 Impact Factor

Publication Stats

4k Citations
1,465.86 Total Impact Points

Institutions

  • 1997–2014
    • University College London
      • • Department of Physics and Astronomy
      • • Department of Space and Climate Physics
      Londinium, England, United Kingdom
  • 2013
    • Cornell University
      • Department of Astronomy
      Ithaca, New York, United States
  • 2011–2013
    • University of California, Irvine
      • Department of Physics and Astronomy
      Irvine, CA, United States
    • University of Cambridge
      • Institute of Astronomy
      Cambridge, ENG, United Kingdom
    • California Institute of Technology
      • Department of Astronomy
      Pasadena, California, United States
  • 2012
    • Netherlands Institute for Space Research, Utrecht
      Utrecht, Utrecht, Netherlands
    • The University of Edinburgh
      • Institute for Astronomy (IfA)
      Edinburgh, Scotland, United Kingdom
    • Cardiff University
      • School of Physics and Astronomy
      Cardiff, Wales, United Kingdom
    • Université Paris-Sud 11
      • Institut d'Astrophysique Spatiale
      Orsay, Île-de-France, France
  • 2011–2012
    • Imperial College London
      • Department of Physics
      Londinium, England, United Kingdom
  • 2002–2012
    • The Royal Observatory, Edinburgh
      Edinburgh, Scotland, United Kingdom
  • 2006–2009
    • Universities Space Research Association
      Houston, Texas, United States
    • University of Leicester
      • Department of Physics and Astronomy
      Leiscester, England, United Kingdom
  • 2007
    • Stanford University
      • Department of Physics
      Palo Alto, California, United States
  • 2006–2007
    • The Astronomical Observatory of Brera
      Merate, Lombardy, Italy
  • 2000–2002
    • Universidad de Cantabria
      Santander, Cantabria, Spain